Despite recent interest and advances in facial micro-expression research, there is still plenty of room for improvement in terms of micro-expression recognition. Conventional feature extraction approaches for micro-expression video consider either the whole video sequence or a part of it, for representation. However, with the high-speed video capture of microexpressions (100-200 fps), are all frames necessary to provide a sufficiently meaningful representation? Is the luxury of data a bane to accurate recognition? A novel proposition is presented in this paper, whereby we utilize only two images per video, namely, the apex frame and the onset frame. The apex frame of a video contains the highest intensity of expression changes among all frames, while the onset is the perfect choice of a reference frame with neutral expression. A new feature extractor, Bi-Weighted Oriented Optical Flow (Bi-WOOF) is proposed to encode essential expressiveness of the apex frame. We evaluated the proposed method on five micro-expression databases-CAS(ME) 2 , CASME II, SMIC-HS, SMIC-NIR and SMIC-VIS. Our experiments lend credence to our hypothesis, with our proposed technique achieving a state-of-the-art F1-score recognition performance of 0.61 and 0.62 in the high frame rate CASME II and SMIC-HS databases respectively.
Micro-expression usually occurs at high-stakes situations and may provide useful information in the field of behavioral psychology for better interpretion and analysis. Unfortunately, it is technically challenging to detect and recognize micro-expressions due to its brief duration and the subtle facial distortions. Apex frame, which is the instant indicating the most expressive emotional state in a video, is effective to classify the emotion in that particular frame. In this work, we present a novel method to spot the apex frame of a spontaneous micro-expression video sequence. A binary search approach is employed to locate the index of the frame in which the peak facial changes occur. Features from specific facial regions are extracted to better represent and describe the expression details. The defined facial regions are selected based on the action unit and landmark coordinates of the subject, in which case these processes are automated. We consider three distinct feature descriptors to evaluate the reliability of the proposed approach. Improvements of at least 20% are achieved when compared to the baselines.
In this work, an algorithm is proposed to scramble an JPEG compressed image without causing bitstream size expansion. The causes of bitstream size expansion in the existing scrambling methods are first identified. Three recommendations on AC coefficients in the scrambled image are proposed to combat unauthorized viewing. As the first step of the scrambling algorithm, edges are identified directly in the frequency domain using solely AC coefficients without relying on any traditional methods. These edges then form a low resolution image of its original counterpart and the information is utilized to identify regions. The DC coefficients are encoded in region-basis to suppress bitstream size expansion while achieving scrambling effect. Experiments were carried out to verify the basic performance of the proposed scrambling method. For the parameter settings considered, most of the scrambled images are of smaller bitstream size than their original counter parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.