With the increasing necessity of autonomous electric vehicles as time passes by, there are a lot of technical prospects within the structure that have a lot of scope for advancement. One such prospect is traffic sign recognition. Several models have already been developed and are in practice but it is evident to everyone within this field that there is still a lot of untapped potential. In this project we implement feature classification using convolutional neural networks to achieve an efficiency and accuracy higher than that of a conventional model. The system first converts the image into grayscale and then three layers of the image are created. By using skilled convolutional neural network which incorporates crucial data of traffic signs and images, they are parallelly assigned to corresponding classes. Results have shown that this system works with great efficiency. Index Terms: Traffic sign, GTSRB, ALVINN, Neural Network, CNN, LeNet, ReLU, Evaluation, Epoch
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.