Social isolation is likely to be recommended for older adults due to COVID-19, with ongoing reduced clinical contact suggested for this population. This has increased the need for remote memory clinics, we therefore review the literature, current practices and guidelines on organizing such remote memory clinics, focusing on assessment of cognition, function and other relevant measurements, proposing a novel pathway based on three levels of complexity: simple telephone or video-based interviews and testing using available tests (Level 1), digitized and validated methods based on standard pen-and-paper tests and scales (Level 2), and finally fully digitized cognitive batteries and remote measurement technologies (RMTs, Level 3). Pros and cons of these strategies are discussed. Remotely collected data negates the need for frail patients or carers to commute to clinic and offers valuable insights into progression over time, as well as treatment responses to therapeutic interventions, providing a more realistic and contextualized environment for data-collection. Notwithstanding several challenges related to internet access, computer skills, limited evidence base and regulatory and data protection issues, digital biomarkers collected remotely have significant potential for diagnosis and symptom management in older adults and we propose a framework and pathway for how technologies can be implemented to support remote memory clinics. These platforms are also well-placed for administration of digital cognitive training and other interventions. The individual, societal and public/private costs of COVID-19 are high and will continue to rise for some time but the challenges the pandemic has placed on memory services also provides an opportunity to embrace novel approaches. Remote memory clinics' financial, logistical, clinical and practical benefits have been highlighted by COVID-19, supporting their use to not only be maintained when social distancing legislation is lifted but to be devoted extra resources and attention to fully potentiate this valuable arm of clinical assessment and care.
This study seeks to explore whether increased PA in school affects children's executive function and aerobic fitness. The "Active school" study was a 10-month randomized controlled trial. The sample included 449 children (10-11 years old) in five intervention and four control schools. The weekly interventions were 2×45 minutes physically active academic lessons, 5×10 minutes physically active breaks, and 5×10 minutes physically active homework. Aerobic fitness was measured using a 10-minute interval running test. Executive function was tested using four cognitive tests (Stroop, verbal fluency, digit span, and Trail Making). A composite score for executive function was computed and used in analyses. Mixed ANCOVA repeated measures were performed to analyze changes in scores for aerobic fitness and executive function. Analysis showed a tendency for a time×group interaction on executive function, but the results were non-significant F(1, 344)=3.64, P=.057. There was no significant time×group interaction for aerobic fitness. Results indicate that increased physical activity in school might improve children's executive function, even without improvement in aerobic fitness, but a longer intervention period may be required to find significant effects.
Changes in cognitive function induced by physical activity have been proposed as a mechanism for the link between physical activity and academic performance. The aim of this study was to investigate if executive function mediated the prospective relations between indices of physical activity and academic performance in a sample of 10-year-old Norwegian children. The study included 1,129 children participating in the Active Smarter Kids (ASK) trial, followed over 7 months. Structural equation modeling (SEM) with a latent variable of executive function (measuring inhibition, working memory, and cognitive flexibility) was used in the analyses. Predictors were objectively measured physical activity, time spent sedentary, aerobic fitness, and motor skills. Outcomes were performance on national tests of numeracy, reading, and English (as a second language). Generally, indices of physical activity did not predict executive function and academic performance. A modest mediation effect of executive function was observed for the relation between motor skills and academic performance.Trial registration: Clinicaltrials.gov registry, trial registration number: NCT02132494.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.