Water resource protection is central to sustainable water supply management for human wellbeing and for the ecological ecosystem to flourish. This review paper focuses on highlighting the role of groundwater and surface water protection practice to improve their sustainable utilization in South Africa. Using an integrative approach, this paper initially reflects on the history of water resources utilization, and it examines what is understood by the term “water resources protection”. This review paper then continues by providing an analysis of the current practice at global and local levels. The study found evidence of water resource utilization in the ancient times with limited challenges despite unavailability of regulation mechanisms. However, in recent times water resource availability challenges linked to water availability and water quality deterioration are evident globally despite having policies and regulation in place. Based on the findings of the study, a novel conceptual results-oriented policy monitoring framework is proposed, and it was distinctively designed to address challenges identified in practice in the South African context. The framework is configured on (1) the vision of the catchment protection and sustainable use, (2) water resources protection practices, (3) the state of water resources, and (4) policy evaluation and review processes as the key elements to drive success in policy implementation and monitoring practice. Therefore, this paper provides a foundation for results-oriented policy monitoring for water resources protection to improve sustainable water resources utilization in the country. The proposed framework can be considered as a reference guide that can be used to monitor policy practice for water resources protection by following a result-oriented monitoring approach
Governments are continuously developing strategies for policy implementation toward water resource protection. However, little is known about the practical application of such plans to test their effectiveness in policy practice. This study focused on resource-directed measures (RDMs) in South Africa to assess progress made on policy implementation for water resource protection. The study included document surveys and content analysis of the publicly available reports and documents sourced from state departments and government websites. The findings of the study indicated that water resource-directed measures are used as policy implementation strategies for water resource protection in the country. Furthermore, the study revealed that significant progress has been made in this regard, when a multi-sectorial policy implementation practice approach through public-private partnerships ensured that 69% of the catchments have process-based RDM projects completed, while 18% are in progress, and only 13% are outstanding. In addition, it was found that water resource classes (WRC), numerical limits and ecological conditions for water resource reserve, and numerical limits and narrative statements for resource quality objectives (RQOs) are intermediate outputs originating from RDMs projects. The study recommends that outputs derived from process-based policy implementation plans must be applied at the water resource level and monitored to assess the effectiveness of policies for their effects on the status of water resources.
The operationalization of water resource protection initiatives for surface water resource quality and equitable water quality allocation is critical for sustainable socio-economic development. This paper assessed Blesbokspruit River Catchment’s water quality status, using the South African Water Quality standards and Water Quality Index (WQI). Protection levels for quality, and waste discharge for point sources were set and evaluated using the total maximum daily loads (TMDLs) and chemical mass balance (CMB) techniques, respectively. The study found that the water quality results for the analysed physico-chemical parameters (Na+, Ca2+, Mg2+, Cl−, F−, pH, EC, SO42−) of the data collected from 2015 to 2022 were within the limits of the water quality standards, except for NO3− and PO42−. The water quality from the study area was categorized as acceptable for drinking purposes with the WQI of 54.80. The application of the TMDL approach resulted in the 77.96 mS/m for electrical conductivity (EC), 9.92 mg/L for phosphate (PO42−), and 15.16 mg/L for nitrate NO3− being set as the protection levels for the catchment. The CMB was found to be a useful tool for the evaluation of point source discharges into water resources. The study recommends the application of TMDL and CMB techniques in water resource protection practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.