mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 299: G833-G843, 2010. First published August 5, 2010 doi:10.1152/ajpgi.00065.2010.-Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) are major causes of death in trauma patients. Gut inflammation and loss of gut barrier function as a consequence of splanchnic ischemia-reperfusion (I/R) have been implicated as the initial triggering events that contribute to the development of the systemic inflammatory response, ALI, and MODS. Since hypoxia-inducible factor (HIF-1) is a key regulator of the physiological and pathophysiological response to hypoxia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Utilizing partially HIF-1␣-deficient mice in a global trauma hemorrhagic shock (T/HS) model, we found that HIF-1 activation was necessary for the development of gut injury and that the prevention of gut injury was associated with an abrogation of lung injury. Specifically, in vivo studies demonstrated that partial HIF-1␣ deficiency ameliorated T/HS-induced increases in intestinal permeability, bacterial translocation, and caspase-3 activation. Lastly, partial HIF-1␣ deficiency reduced TNF-␣, IL-1, cyclooxygenase-2, and inducible nitric oxide synthase levels in the ileal mucosa after T/HS whereas IL-1 mRNA levels were reduced in the lung after T/HS. This study indicates that prolonged intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. Consequently, these results provide unique information on the initiating events in trauma-hemorrhagic shock-induced ALI and MODS as well as potential therapeutic insights. hemorrhagic shock; inflammation; multiple organ dysfunction syndrome; acute lung injury IN PATIENTS SUSTAINING major trauma, the development of the systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction (MODS) is a major clinical problem resulting in 50 -80% of all deaths in surgical intensive care units. Since the pathophysiology of this syndrome remains incompletely understood and therapy remains largely supportive (16), studies focusing on the basic biology of traumainduced SIRS, organ injury/dysfunction, and MODS have been major areas of investigation. These mechanistic studies have generated several working hypotheses, one of which is the gut hypothesis of MODS. A key element in the gut hypothesis of MODS is that a splanchnic ischemia-reperfusion (I/R) insult leading to gut inflammation and loss of barrier function is the initial triggering event that turns the gut into the "motor" of MODS (19). However, the exact mechanisms by which gut I/R leads to intestinal injury and how an intestinal ischemic insult is transduced into a systemic inflammatory response remains incomplete. To date, the majority of the molecular and cellular studies investigating shock-induced gut injury and gut-induced MODS have focused pr...
Human polymorphonuclear neutrophil (PMN) responses to G protein-coupled chemoattractants are highly dependent upon store-operated Ca2+ entry (SOCE). Recent research suggests that SOCE currents can be mediated by a variety of related channel proteins of the transient receptor potential superfamily. SOCE has been regarded as a specific response to depletion of cell calcium stores. We hypothesized that net SOCE might reflect the contributions of more than one calcium entry pathway. SOCE was studied in normal human PMN using Ca2+ and Sr2+ ions. We found that PMN SOCE depends on at least two divalent cation influx pathways. One of these was nonspecific and Sr2+ permeable; the other was Ca2+ specific. The two pathways show different degrees of dependence on store depletion by thapsigargin and ionomycin, and differential sensitivity to inhibition by 2-aminoethyoxydiphenyl borane and gadolinium. The inflammatory G protein-coupled chemoattractants fMLP, platelet-activating factor, and IL-8 elicit unique patterns of Sr2+ and Ca2+ influx channel activation, and SOCE responses to these agonists displayed differing degrees of linkage to prior Ca2+ store depletion. The mechanisms of PMN SOCE responses to G protein-coupled chemoattractants are physiologically diverse. They appear to reflect Ca2+ transport through a variety of channels that are independently regulated to varying degrees by store depletion and by G protein-coupled receptor activation.
BackgroundInjurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.Methods/Principal FindingsThe concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Conclusions/SignificanceOur findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.
Background Following severe traumatic injury, critically ill patients have a prolonged hypercatacholamine state that is associated with bone marrow (BM) dysfunction and persistent anemia. However, current animal models of injury and shock result in a transient anemia. Daily restraint stress (CS) has been shown to increase catecholamines. We hypothesize that adding CS following injury or injury and shock in rats will prolong the hypercatecholaminemia, and prolong the initial anemia, despite elevated erythropoietin levels. Methods Male Sprague-Dawley Rats (N=6–8/group) underwent lung contusion (LC) or combined lung contusion/hemorrhagic shock (LCHS) followed by six days of chronic stress (CS). CS consisted of a two hour restraint period interrupted with repositioning and alarms every 30 minutes. At seven days, urine was assessed for norepinephrine (NE) levels, blood for erythropoietin (EPO) and hemoglobin (Hgb), and BM for erythroid progenitor growth. Results Animals undergoing LC or combined LCHS predictably recovered by day seven; urine NE, EPO and Hgb levels were normal. The addition of CS to LC and LCHS models was associated with a significant elevation in NE on day six. The addition of CS to LC led to a persistent 20–25% decrease in the growth of BM HPCs. These findings were further exaggerated when CS was added following LCHS, resulting in a 20–40% reduction in BM erythroid progenitor colony growth and a 20% decrease in Hgb when compared to LCHS alone. Conclusions Exposing injured animals to CS results in prolonged elevation of norepinephrine and erythropoietin which is associated with worsening BM erythroid function and persistent anemia. Chronic restraint stress following injury and shock provides a clinically relevant model to further evaluate persistent injury-associated anemia seen in critically ill trauma patients. Furthermore, alleviating chronic stress after severe injury is a potential therapeutic target to improve BM dysfunction and anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.