This article presents a bifurcation analysis of a simple Energy Balance Model (EBM) of the Earth’s climate, which suggests that topological change has occurred in the paleoclimate history of the Earth. In the theory of dynamical systems, two systems that are topologically equivalent have solutions with the same qualitative behavior. A change in the topological equivalence class, as parameters are varied, is called a bifurcation. Thus, a bifurcation demarcates a significant change in the behavior of the solutions of a dynamical system. If that system represents climate, then that topological change may represent an abrupt transformation of the climate, occurring even with a very small change in the forcing parameters. In this paper, the existence of a cusp bifurcation is proven in a climate EBM. The existence of this cusp bifurcation implies the co-existence of two distinct stable equilibrium climate states (bistability), as well as the existence of abrupt transitions between these two states (fold bifurcations) in the EBM. These transitions are dependent on the past history of the system (hysteresis). The two universal unfolding parameters for the cusp bifurcation have been determined as functions of the relevant physical parameters. These ideas lead to the proposal of a new explanation for the so-called warm equable climate problem of the mid-Cretaceous and early Eocene. The analysis presented here implies that the mid-Cretaceous and early Eocene climate systems are topologically equivalent to each other, but they are not topologically equivalent to the preindustrial modern climate. The transition from the warm, equable paleoclimate to today’s cooler nonequable climate occurs via fold (or saddle-node) bifurcations in the EBM, which correspond to the Eocene-Oligocene Transition (EOT) at the south pole and the Pliocene-Pleistocene Transition (PPT) at the north pole, in the paleoclimate record of Earth.
Climate models predict that the climate of the Earth is warming and will continue to warm in coming centuries, if there is no mitigation. A recent energy balance model [Kypke et al., Nonlin. Process. Geophys. 27 (2020) 391–409] forecasts that, if the current increase of carbon dioxide in the atmosphere continues unabated, then in the next century the climate of the Earth will not only get warmer, but will transition abruptly via a bifurcation, to a warm equable climate unlike any climate seen on Earth since the Pliocene. This transition to a new climate state is a topological change. That model includes the effects of water vapour feedback and ice albedo feedback, as well as ocean and atmospheric heat transport. This paper adds to that model further amplification by permafrost feedback. That is, as the Arctic warms, permafrost will thaw, releasing large amounts of the greenhouse gases carbon dioxide and methane, which cause further warming. Since knowledge of permafrost stores and release rates is limited, a range of permafrost carbon release sensitivities (Q 10) is considered. The model predicts that permafrost feedback accelerates the timing and increases the likelihood of a topological climate change in the Arctic, and reinforces the view that permafrost feedback should not be ignored in Anthropocene climate models.
Abstract. A column model of the Arctic atmosphere-ocean system is developed including the nonlinear responses of surface albedo and water vapor to temperature. The atmosphere is treated as a gray gas and the flux of longwave radiation is governed by the two-stream Schwarzschild equations. Representative carbon pathways (RCPs) are used to model carbon dioxide concentrations into the future. The resulting nine-dimensional two-point boundary value problem is solved under various RCPs and the solutions analyzed. The model predicts that under the highest carbon pathway, the Arctic climate will undergo an irreversible bifurcation to a warm steady state, which would correspond to an annually ice-free situation. Under the lowest carbon pathway, corresponding to very aggressive carbon emission reductions, the model exhibits only a mild increase in Arctic temperatures. Under the two moderate carbon pathways, temperatures increase more substantially, and the system enters a region of bistability where external perturbations could possibly cause an irreversible switch to a warm, ice-free state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.