Abstract. We develop Integer Programming (IP) solutions for some special college admission problems arising from the Hungarian higher education admission scheme. We focus on four special features, namely the solution concept of stable score-limits, the presence of lower and common quotas, and paired applications. We note that each of the latter three special feature makes the college admissions problem NP-hard to solve. Currently, a heuristic based on the Gale-Shapley algorithm is being used in the application. The IP methods that we propose are not only interesting theoretically, but may also serve as an alternative solution concept for this practical application, and other similar applications.
Bonus-malus systems (BMSs) are widely used in actuarial sciences. These systems are applied by insurance companies to distinguish the policyholders by their risks. The most known application of BMS is in automobile third-party liability insurance. In BMS, there are several classes, and the premium of a policyholder depends on the class he/she is assigned to. The classification of policyholders over the periods of the insurance depends on the transition rules. In general, optimization of these systems involves the calculation of an appropriate premium scale considering the number of classes and transition rules as external parameters. Usually, the stationary distribution is used in the optimization process. In this article, we present a mixed integer linear programming (MILP) formulation for determining the premium scale and the transition rules. We present two versions of the model, one with the calculation of stationary probabilities and another with the consideration of multiple periods of the insurance. Furthermore, numerical examples will also be given to demonstrate that the MILP technique is suitable for handling existing BMSs.
Pairwise comparison matrices are increasingly used in settings where some pairs are missing. However, there exist few inconsistency indices for similar incomplete data sets and no reasonable measure has an associated threshold. This paper generalises the famous rule of thumb for the acceptable level of inconsistency, proposed by Saaty, to incomplete pairwise comparison matrices. The extension is based on choosing the missing elements such that the maximal eigenvalue of the incomplete matrix is minimised. Consequently, the well-established values of the random index cannot be adopted: the inconsistency of random matrices is found to be the function of matrix size and the number of missing elements, with a nearly linear dependence in the case of the latter variable. Our results can be directly built into decisionmaking software and used by practitioners as a statistical criterion for accepting or rejecting an incomplete pairwise comparison matrix.
In a two-sided matching market when agents on both sides have preferences the stability of the solution is typically the most important requirement. However, we may also face some distributional constraints with regard to the minimum number of assignees or the distribution of the assignees according to their types. These two requirements can be challenging to reconcile in practice. In this paper we describe two real applications, a project allocation problem and a workshop assignment problem, both involving some distributional constraints. We used integer programming techniques to find reasonably good solutions with regard to the stability and the distributional constraints. Our approach can be useful in a variety of different applications, such as resident allocation with lower quotas, controlled school choice or college admissions with affirmative action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.