Citrus macroptera (family Rutaceae), commonly known as Sat Kara, is a pharmacologically diverse medicinal plant. Various parts of this plant, specifically fruit, have an immense range of medicinal uses in folk medicine directed for a number of ailments. A plethora of active phytochemical constituents of this plant have been revealed so far, namely, limonene, beta-caryophyllene, beta-pinene, geranial edulinine, ribalinine, isoplatydesmine, and so forth. Several studies demonstrated the exploration of pharmacological potential of various parts such as fruits, leaves, and stems of C. macroptera as antioxidant, cytotoxic, antimicrobial, thrombolytic, hypoglycemic, anxiolytic, antidepressant, cardioprotective, and hepatoprotective. Furthermore, inhibition of in vitro α-amylase, inhibition of paracetamol induced hepatotoxicity, and potentiation of brain antioxidant enzyme are also ascertained. In present review, comprehensive study focused on knowledge regarding several phytopharmacological activities of Citrus macroptera has been described.
Cryptococcus neoformans (Cn) is an important human pathogen and a model system for basidiomycetes. Here we carry out a dissection of its spindle assembly checkpoint (SAC), focusing on Bub1 and Bub3. In many eukaryotes, including humans, Saccharomyces cerevisiae and Schizosaccharomyces pombe, Bub1 underwent gene duplication, generating paralogues referred to as Bub1 and BubR1 (or Mad3). Bub1 has upstream signalling functions at kinetochores, whilst BubR1/Mad3 is a component of the downstream mitotic checkpoint complex (MCC) that delays anaphase onset until all chromosomes are correctly attached. Here we demonstrate that the single CnBub1 protein carries out all the checkpoint roles of both Bub1 kinase and Mad3/BubR1. Proteomic analysis reveals kinetochore targeting via Spc105KNL1 and interactions with all downstream SAC components and effectors (Cdc20 and the anaphase promoting complex/cyclosome). We demonstrate that CnBub1 kinase activity is required to maintain prolonged checkpoint arrest. Thus CnBub1 acts as a SAC signalling hub and is a future target for anti-mitotic drugs.
This work was carried out in collaboration between all authors. Author MAH designed the study, wrote the protocol, managed the experimental process and wrote the first draft of the manuscript. Authors MMR, KA, MUH and MAUC managed the literature searches, analyses of the study and performed the spectroscopy analysis. Authors MAUI and MAUC identified the species of plant. All authors read and approved the final manuscript.
Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle assembly checkpoint (SAC) which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1- or mad2- strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die rapidly as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. Finally, we analyse the phenotype of mad and mps1 mutants during titan cell generation: quantitating viability of titan cells and their daughters generated during the ensuing reductive division. The mad1, mad2 and mps1 mutants show significantly reduced viability: many titans are dead and others produce slow growing colonies. We propose that these Cryptococcus neoformans checkpoint proteins have important roles in ensuring high fidelity chromosome segregation during stressful conditions, such that those heightened during its polyploid infection cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.