Forests are the planet’s main CO2 filtering agent as well as important economical, environmental and social assets. Climate change is exerting an increased stress, resulting in a need for improved research methodologies to study their health, composition or evolution. Traditionally, information about forests has been collected using expensive and work-intensive field inventories, but in recent years unoccupied autonomous vehicles (UAVs) have become very popular as they represent a simple and inexpensive way to gather high resolution data of large forested areas. In addition to this trend, deep learning (DL) has also been gaining much attention in the field of forestry as a way to include the knowledge of forestry experts into automatic software pipelines tackling problems such as tree detection or tree health/species classification. Among the many sensors that UAVs can carry, RGB cameras are fast, cost-effective and allow for straightforward data interpretation. This has resulted in a large increase in the amount of UAV-acquired RGB data available for forest studies. In this review, we focus on studies that use DL and RGB images gathered by UAVs to solve practical forestry research problems. We summarize the existing studies, provide a detailed analysis of their strengths paired with a critical assessment on common methodological problems and include other information, such as available public data and code resources that we believe can be useful for researchers that want to start working in this area. We structure our discussion using three main families of forestry problems: (1) individual Tree Detection, (2) tree Species Classification, and (3) forest Anomaly Detection (forest fires and insect Infestation).
Insect outbreaks are a recurrent natural phenomenon in forest ecosystems expected to increase due to climate change. Recent advances in Unmanned Aerial Vehicles (UAV) and Deep Learning (DL) Networks provide us with tools to monitor them. In this study we used nine orthomosaics and normalized Digital Surface Models (nDSM) to detect and classify healthy and sick Maries fir trees as well as deciduous trees. This study aims at automatically classifying treetops by means of a novel computer vision treetops detection algorithm and the adaptation of existing DL architectures. Considering detection alone, the accuracy results showed 85.70% success. In terms of detection and classification, we were able to detect/classify correctly 78.59% of all tree classes (39.64% for sick fir). However, with data augmentation, detection/classification percentage of the sick fir class rose to 73.01% at the cost of the result accuracy of all tree classes that dropped 63.57%. The implementation of UAV, computer vision and DL techniques contribute to the development of a new approach to evaluate the impact of insect outbreaks in forest.
<p>Insect outbreaks are a recurrent natural phenomenon in forest ecosystems expected to increase due to climate change. Recent advances in Unmanned Aerial Vehicles (UAV) and Deep Learning (DL) Networks provide us with tools to monitor them. In this study we used nine orthomosaics and normalized Digital Surface Models (nDSM) to detect and classify healthy and sick Maries fir trees as well as deciduous trees. This study aims at automatically classifying treetops by means of a novel computer vision treetops detection algorithm and the adaptation of existing DL architectures. Considering detection alone, the accuracy results showed 85.70% success. In terms of detection and classification, we were able to detect/classify correctly 78.59% of all tree classes (39.64% for sick fir). However, with data augmentation, detection/classification percentage of the sick fir class rose to 73.01% at the cost of the result accuracy of all tree classes that dropped 63.57%. The implementation of UAV, computer vision and DL techniques contribute to the development of a new approach to evaluate the impact of insect outbreaks in forest.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.