The nitriding process can be effectively applied to steel with alloying elements. The higher the alloying element in the steel maximizes the mechanical properties, including hardness. However, the raw material can be costly, therefore using cheap materials (without alloys) is a challenge in increasing surface hardness through iron nitride formation. Furthermore Grey and nodular cast iron have different properties and characteristics in the structure. This research focuses on the ability of the cast-iron structure to affect the nitride layer formation. Gas nitriding was conducted in a fluidized bed reactor with a 550°C in 20 % N2 and 80 % NH3 atmosphere at a flow rate gasses of 0.7 m3/hr process temperature and holding for 2, 4, and 6 hours. Tests are conducted by observing the depth of hardening, SEM, and EDAX. According to the results, the nitriding process increases the surface hardness of cast iron. The highest hardness value is nodular cast iron with a holding time of 6 hours (345 HV) and a hardening depth of up to 20-micron meters. The compounds formed in the nitride layer include FeN, Fe2-3N, Fe4N, and Fe2N. The compound formed is strongly influenced by the treatment time. Furthermore, the comparison of nitriding treatment on gray and nodular cast iron was influenced by the flake and nodule structure. In general, the nodule structure is responsible for maximum hardness. The longer treatment time allows the nitrogen atoms to diffuse more to the surface, while the flake structure limits the absorption of nitrogen atoms into the surface of the cast iron. Characterization of Nodular Cast Iron shows that The hardening depth distribution trend due to the nitriding process in nodular cast iron was not much different from gray cast iron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.