Nonreciprocal elements are a vital building block of electrical and optical systems. In the infrared regime, there is a particular interest in structures that break reciprocity because their thermal absorptive (and emissive) properties should not obey the Kirchhoff thermal radiation law. In this work, we break time-reversal symmetry and reciprocity in n-type–doped magneto-optic InAs with a static magnetic field where light coupling is mediated by a guided-mode resonator structure, whose resonant frequency coincides with the epsilon-near-zero resonance of the doped indium arsenide. Using this structure, we observe the nonreciprocal absorptive behavior as a function of magnetic field and scattering angle in the infrared. Accounting for resonant and nonresonant optical scattering, we reliably model experimental results that break reciprocal absorption relations in the infrared. The ability to design these nonreciprocal absorbers opens an avenue to explore devices with unequal absorptivity and emissivity in specific channels.
Active metasurfaces designed to operate at optical frequencies are flat optical elements that can dynamic, subwavelength-scale wavefront control of reflected or transmitted light. The practical and fundamental power-handling limits of active metasurfaces at high pulse energies and high average powers determine the potential applications for these emerging photonic components. Here, we investigate thermal performance limits of reflective gate-tunable conducting oxide metasurfaces illuminated with high power density laser beams, for both continuous wave (CW) and pulsed laser illumination. Our gate-tunable metasurfaces use indium tin oxide (ITO) as an active material, which undergoes an epsilon-near-zero (ENZ) transition under applied electrical bias. We experimentally show that under CW illumination, there is no significant change in the electrically tunable metasurface optical response for high irradiances ranging from 1.6 kW/cm2 to 9.1 kW/cm2 when the illuminating laser beam diameter is 7 μm. Even under an applied bias, when over 60% of the incoming light is absorbed in a 1 nm–thick charge accumulation layer within ITO, the local temperature rise in the metasurface is modest, supporting its robustness for high-power applications. Additionally, we theoretically show that in the ENZ regime, the metasurface reflectance can be increased by a factor of 10 by replacing the active ITO layer with cadmium oxide (CdO). Thus conducting oxide metasurfaces can tolerate the power densities needed in higher power applications, including free space optical communications, to light detection and ranging (LiDAR), as well as laser-based additive manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.