The atmospheric boundary layer flow downstream of an abrupt rough-tosmooth surface roughness transition is studied using large eddy simulations (LES) for a range of surface roughness ratios. Standard wall models assume horizontal homogeneity and are inapplicable for heterogeneous surfaces. Two heterogeneous-surface wall models are evaluated, one based on a local application of similarity theory using a twice-filtered velocity field (BZ model) and another based on a local friction-velocity obtained by blending the upstream and downstream profiles (APA model). The wall shear stress and the turbulence intensity (TI) are sensitive to the wall model while the mean streamwise velocity and the total shear stress (TSS) are less sensitive. The APA model is more accurate than the BZ model on comparison to previous experiments. The APA model results are sensitive to the ratio of the equilibrium and the internal boundary layer (IBL) heights. A value of 0.027 gives good agreement with experiments over a wide range of roughness ratios. The IBL height is insensitive to the turbulent quantity (TSS or TI) on which it is based. Several analytical relations for the IBL height are evaluated using the LES data. Two models are found to be accurate for different roughness ratios while one model is reasonable over the full range investigated. A phenomenological model is
The atmospheric boundary layer flow downstream of an abrupt rough-to-smooth surface roughness transition is studied using large eddy simulations (LES) for a range of surface roughness ratios. Standard wall models assume horizontal homogeneity and are inapplicable for heterogeneous surfaces. Two heterogeneous-surface wall models are evaluated, one based on a local application of similarity theory using a twice-filtered velocity field (BZ model) and another based on a local friction-velocity obtained by blending the upstream and downstream profiles (APA model). The wall shear stress and the turbulence intensity (TI) are sensitive to the wall model while the mean streamwise velocity and the total shear stress (TSS) are less sensitive. The APA model is more accurate than the BZ model on comparison to previous experiments. The APA model results are sensitive to the ratio of the equilibrium and the internal boundary layer (IBL) heights. A value of 0.027 gives good agreement with experiments over a wide range of roughness ratios. The IBL height is insensitive to the turbulent quantity (TSS or TI) on which it is based. Several analytical relations for the IBL height are evaluated using the LES data. Two models are found to be accurate for different roughness ratios while one model is reasonable over the full range investigated. A phenomenological model is developed for the TI downstream of the roughness jump using a weighted average of the upstream and far-downstream profiles. The model yields reasonable predictions for all roughness ratios investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.