Dysbiosis in the gut microbiome has been implicated in several diseases including auto-immune diseases, inflammatory diseases, cancers and mental disorders. Keratitis is an inflammatory disease of the eye significantly contributing to corneal blindness in the developing world. It would be worthwhile to investigate the possibility of dysbiosis in the gut microbiome being associated with Keratitis. Here, we have analyzed fungal and bacterial populations in stool samples through high-throughput sequencing of the ITS2 region for fungi and V3-V4 region of 16S rRNA gene for bacteria in healthy controls (HC, n = 31) and patients with fungal keratitis (FK, n = 32). Candida albicans (2 OTUs), Aspergillus (1 OTU) and 3 other denovo-OTUs were enriched in FK samples and an unclassified denovo-OTU was enriched in HC samples. However, the overall abundances of these ‘discriminatory’ OTUs were very low (< 0.001%) and not indicative of significant dysbiosis in the fungal community inhabiting the gut of FK patients. In contrast, the gut bacterial richness and diversity in FK patients was significantly decreased when compared to HC. 52 OTUs were significantly enriched in HC samples whereas only 5 OTUs in FK. The OTUs prominently enriched in HC were identified as Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Lachnospira, Mitsuokella multacida, Bacteroides plebeius, Megasphaera and Lachnospiraceae. In FK samples, 5 OTUs affiliated to Bacteroides fragilis, Dorea, Treponema, Fusobacteriaceae, and Acidimicrobiales were significantly higher in abundance. The functional implications are that Faecalibacterium prausnitzii, an anti-inflammatory bacterium and Megasphaera, Mitsuokella multacida and Lachnospira are butyrate producers, which were enriched in HC patients, whereas Treponema and Bacteroides fragilis, which are pathogenic were abundant in FK patients, playing a potential pro-inflammatory role. Heatmap, PCoA plots and functional profiles further confirm the distinct patterns of gut bacterial composition in FK and HC samples. Our study demonstrates dysbiosis in the gut bacterial microbiomes of FK patients compared to HC. Further, based on inferred functions, it appears that dysbiosis in the gut of FK subjects is strongly associated with the disease phenotype with decrease in abundance of beneficial bacteria and increase in abundance of pro-inflammatory and pathogenic bacteria.
Background Escherichia coli, the gastrointestinal commensal, is also known to cause ocular infections such as conjunctivitis, keratitis and endophthalmitis. These infections are normally resolved by topical application of an appropriate antibiotic. But, at times these E. coli are resistant to the antibiotic and this could be due to formation of a biofilm. In this study ocular E. coli from patients with conjunctivitis, keratitis or endophthalmitis were screened for their antibiotic susceptibility and biofilm formation potential. In addition DNA-microarray analysis was done to identify genes that are involved in biofilm formation and antibiotic resistance.ResultsOut of 12 ocular E. coli isolated from patients ten isolates were resistant to one or more of the nine antibiotics tested and majority of the isolates were positive for biofilm formation. In E. coli L-1216/2010, the best biofilm forming isolate, biofilm formation was confirmed by scanning electron microscopy. Confocal laser scanning microscopic studies indicated that the thickness of the biofilm increased up to 72 h of growth. Further, in the biofilm phase, E. coli L-1216/2010 was 100 times more resistant to the eight antibiotics tested compared to planktonic phase. DNA microarray analysis indicated that in biofilm forming E. coli L-1216/2010 genes encoding biofilm formation such as cell adhesion genes, LPS production genes, genes required for biofilm architecture and extracellular matrix remodeling and genes encoding for proteins that are integral to the cell membrane and those that influence antigen presentation are up regulated during biofilm formation. In addition genes that confer antimicrobial resistance such as genes encoding antimicrobial efflux (mdtM and cycA), virulence (insQ, yjgK), toxin production (sat, yjgK, chpS, chpB and ygjN), transport of amino-acids and other metabolites (cbrB, cbrC, hisI and mglB) are also up regulated. These genes could serve as potential targets for developing strategies for hacking biofilms and overcoming antibiotic resistance.ConclusionsThis is the first study on global gene expression in antibiotic resistant ocular E. coli with a potential to form biofilm. Using native ocular isolates for antibiotic susceptibility testing, for biofilm formation and global gene expression is relevant and more acceptable than using type strains or non clinical strains which do not necessarily mimic the native isolate.Electronic supplementary materialThe online version of this article (doi:10.1186/s13099-017-0164-2) contains supplementary material, which is available to authorized users.
The present work is an attempt to establish the functionality of genes involved in biofilm formation and antibiotic resistance in an ocular strain of Escherichia coli (L-1216/2010) which was isolated and characterized from the Vitreous fluid of a patient with Endophthalmitis. For this purpose, seven separate gene-specific knockout mutants were generated by homologous recombination in ocular E. coli . The genes that were mutated included three transmembrane genes ytfR (ABC transporter ATP-binding protein), mdtO (multidrug efflux system) and tolA (inner membrane protein), ryfA coding for non-coding RNA and three metabolic genes mhpA (3-3-hydroxyphenylpropionate 1,2-dioxygenase), mhpB (2,3-di hydroxyphenylpropionate 1,2-dioxygenase), and bdcR (regulatory gene of bdcA ). Mutants were validated by sequencing and Reverse transcription-PCR and monitored for biofilm formation by XTT method and confocal microscopy. The antibiotic susceptibility of the mutants was also ascertained. The results indicated that biofilm formation was inhibited in five mutants (Δ bdcR , Δ mhpA , Δ mhpB , Δ ryfA , and Δ tolA ) and the thickness of biofilm reduced from 17.2 μm in the wildtype to 1.5 to 4.8 μm in the mutants. Mutants Δ ytfR and Δ mdtO retained the potential to form biofilm. Complementation of the mutants with the wild type gene restored biofilm formation potential in all mutants except in Δ mhpB . The 5 mutants which lost their ability to form biofilm (Δ bdcR , Δ mhpA , Δ mhpB , Δ tolA , and Δ ryfA ) did not exhibit any change in their susceptibility to Ceftazidime, Cefuroxime, Ciprofloxacin, Gentamicin, Cefotaxime, Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin in the planktonic phase compared to wild type ocular E. coli . But Δ mdtO was the only mutant with altered MIC to Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin both in the planktonic and biofilm phase. This is the first report demonstrating the involvement of the metabolic genes mhpA and mhpB and bdcR (regulatory gene of bdcA ) in biofilm formation in ocular E. coli . In addition we provide evidence that tolA and ryfA are required for biofilm formation while ytfR and mdtO are not required. Mitigation of biofilm formation to overcome antibiotic resistance could be achieved by ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.