This paper presented the analysis of embankment slope stability by considering the problem of embankment slope stability with special effects that it was filled with sand and was placed on purely cohesive clay. The finite element limit analysis of two-dimensional plane strain was employed to analyze the stability of this problem. The embankment slope height (H), the depth factors (d/H) and the embankment slope angle (β) for the finite element limit analysis of sand was modeled as a volume element with the properties of Mohr-Coulomb material in drained condition. And the clay was modeled as a volume element with the properties of Tresca material in undrained condition where the parameters were soil unit weight (γ), undrained shear strength (su) and friction angle (φ′). Parametric studies consisted of three dimensionless variables including depth factors (d/H), friction angle (φ′) and embankment slope angle (β). Results were summarized in the form of the dimensionless stability number (su/γH(FS)) and the design chart and application were presented. In addition, the comparison of the solution of stability number with the limit equilibrium methods and the failure mechanisms were also proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.