Background: DNA barcoding, i.e. the use of a 648 bp section of the mitochondrial gene cytochrome c oxidase I, has recently been promoted as useful for the rapid identification and discovery of species. Its success is dependent either on the strength of the claim that interspecific variation exceeds intraspecific variation by one order of magnitude, thus establishing a "barcoding gap", or on the reciprocal monophyly of species.
For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and diverse tropical omnivore communities.
Blü thgen, N., Stork, N. E. and Fiedler, K. 2004. Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Á/ Oikos 106: 344 Á/358Complex distribution patterns of species-rich insect communities in tropical rainforests have been intensively studied, and yet we know very little about processes that generate these patterns. We provide evidence for the key role of homopteran honeydew and plant nectar in structuring ant communities in an Australian tropical rainforest canopy and understorey. We also test the ant visitation of these resources against predictions derived from the 'ant-mosaic' hypothesis. Two ant species were highly dominant in terms of territorial behaviour and abundance: Oecophylla smaragdina and Anonychomyrma gilberti . Both dominant ant species monopolised large aggregations of honeydew-producing homopterans. Attended homopteran species were highly segregated between these two ant species. For the use of extrafloral and floral nectar (involving 43 ant species on 48 plant species), partitioning of ant species among plant species and between canopy and understorey was also significant, but less pronounced. In contrast to trophobioses, simultaneous co-occurrence of different nectar foraging ant species on the same plant individuals was frequent (23% of all surveys). While both dominant ant species were mutually exclusive on honeydew and nectar sources, cooccurrence with non-dominant ant species on nectaries was common. The proportion of visits with co-occurrences was low for dominant ants and high for many subordinate species. These findings support the ant mosaic theory. The differential role of honeydew (as a specialised resource for dominant ants) and nectar (as an opportunistic resource for all ants including the co-occurring non-dominant species) provides a plausible structuring mechanism for the Australian canopy ant community studied.
Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.
Summary1. Feeding preferences of nectarivorous ants for sugars and amino acids were studied in an Australian tropical rain forest using artificial nectar solutions. Fifty-one ant species were recorded feeding on the solutions. 2. Preferences among carbohydrates were principally concordant between ant species. In paired tests, sucrose was often preferred over fructose, glucose, maltose, melezitose, raffinose and xylose, respectively. Attractiveness of sucrose baits increased with concentration. 3. Many ant species preferred sugar solutions containing mixtures of amino acids over pure sugar solutions. However, preferences among seven pairs of single amino acids in sugar solutions differed substantially between ant species, including several cases where different ant species displayed significant opposite choices. 4. Ant selectivity between solutions was significantly reduced when different ant species co-occurred on the same bait. Preferences for single amino acids were also reduced when colonies fed extensively on the same compound prior to the experiment for 2 days. 5. Our results indicate that both interspecific variability in gustatory preferences and conditional effects such as competition and colony requirements affect resource selection in multispecies communities. These processes may be crucial in niche partitioning of species-rich nectarivore assemblages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.