The quality and reliability of consumables, including gear oils, results in the failure-free operation of the transmission components in heavy trucks. It is known that oil viscosity is essential for all lubricated tribopairs for wear and friction reduction in all vehicles with a gearbox. Viscosity may be influenced by the contamination that wear products can impart on the oil. Oil contamination can also affect lubrication efficiency in the boundary friction conditions in gearboxes where slips occur (including bevel and hypoid gearboxes). The present research focused on this issue. An obvious hypothesis was adopted, where it was theorized that exploiting the contaminants that are present in gear oil may affect how the lubricating properties of gear oils deteriorate. Laboratory tests were performed on contaminants that are commonly found in gear oil using the Parker Laser CM20. The study was designed to identify a number of different solid particles that are present in oil. At the second stage, friction tests were conducted for a friction couple “ball-on-disc” in an oil bath at 90 °C on a CSM microtribometer. The quantitative contamination of the gear oils that contained solid particles and the curves representing the friction coefficients of fresh oils with a history of exploitation were compared. The test results were statistically analysed. Exploitation was shown to have a significant impact on the contamination of gear oils. It was revealed that the contamination and the mileage had no effect on the tested oils.
This paper evaluates the wear characteristics of hardfacing coatings. Regenerative hardfacing coatings were applied with the TIG (Tungsten Inert Gas) method. The solid welding wires were used to obtain the coatings marked as: EL-500 HB, EL-650 HB, and EL-3348. The tribological analysis of samples was conducted at room temperature. The wear rate was evaluated with a THT 1000 Anton Parr ball-on-disc tribotester, in accordance with the ASTM G-133 standard. The counterbody (static partner) consisted of balls with the diameter of 6 mm made of Al2O3. The test was performed with the sliding speed of the friction pair 0.4 m/s, track radius 10 mm, normal load 20 N, acquisition rate 10 Hz and sliding distance 2000 m. During the test, the friction coefficient and wear rate were recorded. The multi-criteria assessment of the construction materials discussed, while taking into account five criteria, showed that EL-3348 HB is the best material. Computer applications were used for multi-criteria assessment and statistical processing of data.
The biomaterials, which are the subject of this work, are the dental restorative materials classified as light cured polymer matrix ceramic composites or resin based composites. The dental composite materials are needed for the repairment of human teeth. Fillings and other dental applications are exposed to the biomechanical loading in the chewing process. The wear resistance and hardness are important functional properties. Currently, nanofiller composites play an important role among dental composites. The objective of this paper was to study and analyze the friction, mechanical and wear properties of the surface of polymer matrix ceramic filed nanocomposites. Three material groups were used, one commercial composite Filek Z550 (3M ESPE, USA) and two experimental composites Ex-nano(G) and Ex-flow(G). The microindentation tests were conducted on the Micro Combi Tester device (Anton Paar GmbH, Germany). Rotating sliding ball-on-disc friction tests were performed against an alumina ball on 5 N load at 1 Hz in the bath of artificial saliva at 37°C. The linear wear and friction coefficients were evaluated. In the light of the obtained results of contact and friction strength tests, it was found that the performance depends on the production technology of the polymer-ceramic composites. The test results indicate that the share of filler nanoparticles the in experimental composites is advantageous due to the tribological wear.
This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution images with low noise, which are far more useful for the location of points where the reflection occurred inside the experimental tank. Each reconstruction is divided into two parts, estimation of starting points of wave packets of raw signal (SAT—starting arrival time) and image reconstruction via XGBoost algorithm based on SAT matrix. This technology is the basis of a project to design non-invasive monitoring and diagnostics of technological processes. In this paper, we present a method of the complete solution for monitoring industrial processes. The measurements used in the study were obtained with the author’s solution of ultrasound tomography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.