Reproduction is a critical fitness component in large herbivores. Biogeographic models predict that populations occurring at the edges of the range may have compromised reproductive rates because of inferior habitat at range peripheries. When reproductive rates are chronically low, ungulate populations may lack the resiliency to rebound quickly after periods of environmental stress, and this effect may be greatest for heat-sensitive organisms at their southern range limit. To assess the demographic vulnerability of moose (Alces alces), we studied relationships between reproductive rates, maternal age, and rump fat in the southernmost naturally occurring moose population in North America. For prime-aged moose in our study, pregnancy rates were high (92%), but moose aged < 3 or > 9 years had low pregnancy rates (32% and 38%, respectively). The relationship between rump fat and pregnancy was nonlinear such that a threshold of at least 2mm of rump fat yielded a high probability of being pregnant midwinter. In contrast, among pregnant moose, the probability of both producing a calf and recruiting it until spring increased linearly with rump fat. We also conducted a meta-analysis of pregnancy and twinning rates for adult (≥ 2 years) moose across a latitudinal gradient to compare reproductive rates from our study to other populations in North America. Moose living at southern latitudes tended to have lower reproductive rates than those living in the core of moose range, implying that southern moose populations may be demographically more vulnerable than northern moose populations.
Stream ecosystems can be dramatically altered by dam‐building activities of North American beaver (Castor canadensis). The extent to which beavers’ ecosystem engineering alters riverscapes is driven by the density, longevity, and size (i.e. height and length) of the dams constructed. In comparison to the relative ubiquity of beaver dams on the landscape, there is a scarcity of data describing dam heights. We collected data describing dam height and dam condition (i.e. damaged or intact) of 500 beaver dams via rapid field survey, differentiating between primary and secondary dams and associating each dam with a beaver dam complex. With these data, we examined the influence of beaver dam type (primary/secondary), drainage area, streamflow, stream power, valley bottom width, and HUC12 watershed on beaver dam height with linear regression and the probability that a beaver dam was damaged with logistic regression. On average, primary dams were 0.46 m taller than secondary dams; 15% of observed dams were primary and 85% secondary. Dam type accounted for 21% of dam height variation (p <0.0001). Slope (p = 0.0107), discharge (p = 0.0029), and drainage area (p = 0.0399) also affected dam height, but each accounted for less than 3% of dam height variation. The average number of dams in a dam complex was 6.1 (SD ± 4.5) and ranged from 1 to 21. The watershed a beaver dam was located in accounted for the most variability (17.8%) in the probability that a beaver dam was damaged, which was greater than the variability explained by any multiple logistic regression model. These results indicate that temporally dynamic variables are important influencers of dam longevity and that beaver dam ecology is a primary factor influencing beaver dam height. © 2020 John Wiley & Sons, Ltd.
National Hydrography Dataset (NHD) stream permanence classifications (SPC; perennial, intermittent, and ephemeral) are widely used for data visualization and applied science, and have implications for resource policy and management. NHD SPC were assigned using a combination of topographic field surveys and interviews with local residents. However, previous studies indicate that non-NHD, in situ streamflow observations (NNO) frequently disagree with NHD SPC. We hypothesized that differences in annual climate conditions between map creation years and the years NNO were collected contributed to disagreement between NNO and NHD SPC. We compared NHD SPC to 10,055 NNO (classified as "wet" or "dry") collected in the Pacific Northwest between 1977 and 2015. Annual climate conditions were described with the Palmer Drought Severity Index (PDSI). Stream order was added as a covariate to account for different effects along the stream network. NHD SPC agreed with 80.5% of NNO. "Dry" NNO were five times more likely to disagree with NHD than "wet" NNO (p < 0.0001). Disagreement was greatest on first-order streams. When NHD SPC were collected during a wetter period than NNO the probability of disagreement increased by a factor of 1.17 (p < 0.0001) per unit difference in PDSI. The influence of climate on disagreements between NNO and NHD SPC provides support for the continued development of dynamic models representing SPC as opposed to static NHD classifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.