While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates.
In recent years, high-resolution optical imaging in the far field has provided opportunities for alternative approaches to nanocharacterization traditionally dominated by electron and scanning probe microscopies. Here, we report the optical super-resolution imaging of model block copolymer (BCP) thin film surface nanostructures through stochastic optical reconstruction microscopy (STORM). We compare a set of surface-functionalized fluorescent core–shell silica nanoparticles encapsulating two different organic dyes, Cy3 and Cy5, with the corresponding free dyes in STORM. Using various click-type chemistries, these probes are covalently attached to the surface of specific blocks of BCP thin films, enabling selective block labeling and optical visualization. We demonstrate that the enhanced brightness of these particle probes offers distinct advantages over conventional dye labeling, outperforming one of the best STORM dyes available (Cy5).
Recent developments in quantum materials hold promise for revolutionizing energy and information technologies. The use of soft matter self-assembly, for example, by employing block copolymers (BCPs) as structure directing or templating agents, offers facile pathways toward quantum metamaterials with highly tunable mesostructures via scalable solution processing. Here, we report the preparation of patternable mesoporous niobium carbonitride-type thin film superconductors through spin-coating of a hybrid solution containing an amphiphilic BCP swollen by niobia sol precursors and subsequent thermal processing in combination with photolithography. Spin-coated as-made BCP-niobia hybrid thin films on silicon substrates after optional photolithographic definition are heated in air to produce a porous oxide, and subsequently converted in a multistep process to carbonitrides via treatment with high temperatures in reactive gases including ammonia. Grazing incidence small-angle X-ray scattering suggests the presence of ordered mesostructures in as-made BCP-niobia films without further annealing, consistent with a distorted alternating gyroid morphology that is retained upon thermal treatments. Wide-angle X-ray scattering confirms the synthesis of phase-pure niobium carbonitride nanocrystals with rock-salt lattices within the mesoscale networks. Electrical transport measurements of unpatterned thin films show initial exponential rise in resistivity characteristic of thermal activation in granular systems down to 12.8 K, at which point resistivity drops to zero into a superconducting state. Magnetoresistance measurements determine the superconducting upper critical field to be over 16 T, demonstrating material quality on par with niobium carbonitrides obtained from traditional solid-state synthesis methods. We discuss how such cost-effective and scalable solution-based quantum materials fabrication approaches may be integrated into existing microelectronics processing, promising the emergence of a technology with tremendous academic and industrial potential by combining the capabilities of soft matter self-assembly with quantum materials.
Many organisms orchestrate the controlled precipitation of minerals. This physiological process takes place at ambient conditions, using soluble ions as building blocks. A widespread strategy for such crystallization processes is using a multistep route, where the initial phase is metastable and gradually transforms into the mature mineral phase. Even though the maturation of these intermediate phases has been intensively studied, it remains unclear how the initial, far from equilibrium phase can form within the cellular context. A model system for controlled biomineralization is the production of coccoliths by marine microalgae. Coccoliths are calcium carbonate crystalline arrays that form within the intracellular environment, at very low calcium concentrations. Here, we used coccolith-derived and synthetic polymers to study, in vitro, the chemical interactions between calcium ions and organic macromolecules that precede coccolith formation. We used in situ analyses, including state-of-the-art cryo-electron tomography and liquid-cell atomic force microscopy, to study the interactions in bulk solution and on organic surfaces simultaneously. The results unveil a chemical process in which a functional surface induces the precipitation of a polymer–Ca dense phase, or a coacervate, at chemical conditions where precipitation in solution is kinetically inhibited. This strategy demonstrates how organisms can form dense Ca-rich phases from the submillimolar concentration of calcium within organelles. This Ca-rich phase can then transform into a mineral precursor in a subsequent step, without posing challenges to cellular homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.