The term superhydrophilicity is only 11-12 years old and was introduced just after the explosion of research on superhydrophobic surfaces, in response to the demand for surfaces and coatings with exceptionally strong affinity to water. The definition of superhydrophilic substrates has not been clarified yet, and unrestricted use of this term to hydrophilic surfaces has stirred controversy in the last few years in the surface chemistry community. In this review, we take a close look into major definitions of hydrophilic surfaces used in the past, before we review the physics behind the superhydrophilic phenomenon and make recommendation on defining superhydrophilic surfaces and coatings. We also review chemical and physical methods used in the fabrication of substrates on surfaces of which water spreads completely. Several applications of superhydrophilic surfaces, including examples from the authors' own research, conclude this review.
Wettability properties of polyetheretherketone (PEEK) activated and non-activated by nitrogen plasma have been investigated. Moreover, the PEEK plates were covered with antibacterial chitosan and its wettability properties were also investigated. Surface topography was determined using SEM and optical profilometry and surface composition by FT-IR and XPS. For determination of apparent surface free energy, the hysteresis approach (CAH), acid base (LWAB), and Owens-Wendt (O-W) theory were used. The equilibrium contact angles were calculated from the Tadmor theory and further used for apparent surface energy calculation applying the abovementioned approaches. Due to the surface plasma activation both the roughness of the surface and the polar component of apparent surface free energy increased. It is shown that nitrogen plasma activation of PEEK surface increases the adhesion of chitosan to the surface due to the combination effect of: (i) the increase in surface roughness, (ii) introducing the polar groups onto the surface. K E Y W O R D S chitosan, low-temperature plasma activation, polyetheretherketone, surface free energy, wettability How to cite this article: Terpiłowski K, Wiącek AE, Jurak M. Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers. Adv Polym Technol. 2018;37:1557-1569.
A new adsorbent consisting of fumed, mixed alumina, silica, and titania in various proportions (AST 50) was investigated. The studied material was prepared by chemical vapor deposition method. The diameter of AST 50 primary particles was equal to about 51 nm which denotes that it can be classified as a nanomaterial. In the presented paper, the adsorption properties of polyvinyl alcohol on the ternary oxide were investigated. The polymer macromolecules were characterized by two different molecular weights and degree of hydrolysis. The polymer adsorption reaches the maximum at pH 3 and decreases with the solution pH rise. The reduction of the adsorbed PVA macromolecules is related to the electrostatic repulsion forces occurring in the studied system. The AST 50 point of zero charge (pHpzc) obtained from the potentiometric titration is equal to 4.7. Due to the nonionic character of the analyzed macromolecular compound, the polymer attendance has an insignificant effect on the AST 50 surface charge density. In the case of the adsorbent particles zeta potential, the obtained dependencies are different in the absence and presence of PVA. The shift of the slipping plane and displacement of the counter-ions from Stern layer by the adsorbed polymer chains have the greatest effect on the ζ potential value. The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable. In turn, in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST 50 surface. The addition of PVA 100 significantly improves the suspension stability at pH 3 and 6; at higher pH value, the polymer presence does not influence the system durability. It is related to the steric and electrosteric stabilization of the colloidal particles by the adsorbed polyvinyl alcohol macromolecules.
Although electrical properties of nonionogenic hydrophobic surface (solid or liquid) in water and/or electrolyte solutions have been studied for many decades, they are still not well recognized, especially as for the nature of the charge and potential origin. Similarly, water structure at such a surface is still extensively studied. One such system is paraffin wax/water (electrolyte). The zeta potentials and the particle diameters of this system were investigated in this paper. To obtain the suspension of paraffin in water or electrolyte solution (NaCl or LaCl3), the mixture was heated to ca. 70 degrees C and then stirred during cooling. For thus obtained suspensions, the zeta potential was determined as a function of time at 20 degrees C. Also the pH effect on the zeta potentials was investigated. The zeta potentials were calculated from Henry's equation. The results obtained by us are in agreement with those obtained earlier by others. They confirm that although H+/OH- are not surface charge creating ions, OH- ions to some extent are zeta potential determining for the paraffin surface. By use of the potentials and diameters, the electric charge for a spherical particle in the shear plane was calculated. These values are small in the range of 10(-3) C/m2. On the basis of the findings of water structure near hydrophobic surface and the calculated charges, it is concluded that in fact the potential may be created by immobilized and oriented water dipoles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.