Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.
Physical interactions between members of the MYB and bHLH transcription factor (TF) families regulate many important biological processes in plants. Not all reported MYB–bHLH interactions can be explained by the known binding sites in the R3 repeat of the MYB DNA-binding domain. Noteworthy, most of the sequence diversity of MYB TFs lies in their non-MYB regions, which contain orphan small subgroup-defining motifs not yet linked to molecular functions. Here, we identified the motif mediating interaction between MYB TFs from subgroup 12 and their bHLH partners. Unlike other known MYB–bHLH interactions, the motif locates to the centre of the predicted disordered non-MYB region. We characterised the core motif, which enabled accurate prediction of previously unknown bHLH-interacting MYB TFs in Arabidopsis thaliana, and we confirmed its functional importance in planta. Our results indicate a correlation between the MYB–bHLH interaction affinity and the phenotypic output controlled by the TF complex. The identification of an interaction motif outside R3 indicates that MYB–bHLH interactions must have arisen multiple times, independently and suggests many more motifs of functional relevance to be harvested from subgroup-specific studies.
Dynamically changing environmental conditions promote a complex regulation of plant metabolism and balanced resource investments to development and defense. Plants of the Brassicales order constitutively allocate carbon, nitrogen, and sulfur to synthesize glucosinolates as their primary defense metabolites. Previous findings support a model in which steady-state levels of glucosinolates in intact tissues are determined by biosynthesis and turnover through a yet uncharacterized turnover pathway. To investigate glucosinolate turnover in the absence of tissue damage, we quantified exogenously applied allyl glucosinolate and endogenous glucosinolates under different nutrient conditions. Our data shows that, in seedlings of Arabidopsis thaliana accession Columbia-0, glucosinolate biosynthesis and turnover are coordinated according to nutrient availability. Whereas exogenous carbon sources had general quantitative effects on glucosinolate accumulation, sulfur or nitrogen limitation resulted in distinct changes in glucosinolate profiles, indicating that these macronutrients provide different regulatory inputs. Raphanusamic acid, a breakdown product that can potentially be formed from all glucosinolate structures appears not to reflect in planta turnover rates, but instead correlates with increased accumulation of endogenous glucosinolates. Thus, raphanusamic acid could represent a metabolic checkpoint that allows glucosinolate-producing plants to measure the flux through the biosynthetic and/or turnover pathways and thereby to dynamically adjust glucosinolate accumulation in response to internal and external signals.
Nitrogen, as limiting nutrient for plant growth and crop yield, is a main component of fertilizers and heavily used in modern agriculture. Early reports from over-application of fertilizers in crop production have shown to repress the transition from vegetative to reproductive phase. For the model plant Arabidopsis thaliana, there is evidence that low nitrogen conditions promote early flowering, while high nitrogen as well as nitrogen starvation conditions display the opposite effect. To gain a better understanding of how nitrogen affects the onset of flowering, we reviewed the existing literature for A. thaliana and carried out a meta-analysis on available transcriptomics data, seeking for potential genes and pathways involved in both nitrogen responses and flowering time control. With this strategy, we aimed at identifying potential gateways for integration of nitrogen signaling and potential regulators that might link the regulatory networks controlling nitrogen and flowering in A. thaliana. We found that photoperiodic pathway genes have high potential to be involved in nitrogen-dependent flowering.
Background and Aims ATP-dependent phosphofructokinases (PFKs) catalyse phosphorylation of the carbon-1 position of fructose-6-phosphate, to form fructose-1,6-bisphosphate. In the cytosol, this is considered a key step in channelling carbon into glycolysis. Arabidopsis thaliana has seven genes encoding PFK isoforms, two chloroplastic and five cytosolic. This study focusses on the four major cytosolic isoforms of PFK in vegetative tissues of A. thaliana. Methods We have isolated homozygous knock-out individual mutants (pfk1, pfk3, pfk6, pfk7) and two double mutants (pfk1/7 and pfk3/6) and characterized their growth and metabolic phenotypes. Key Results In contrast to single mutants and the double mutant pfk3/6 for the hypoxia-responsive isoforms, the double mutant pfk1/7 had reduced PFK activity and shows a clear visual and metabolic phenotype with reduced shoot growth, early flowering, and elevated hexose levels. This mutant also has an altered ratio of short/long aliphatic glucosinolates and an altered root-shoot distribution. Surprisingly, this mutant does not show any major changes in short-term carbon flux and in levels of hexose-phosphates. Conclusions We conclude that the two isoforms PFK1 and PFK7 are important for sugar homeostasis in leaf metabolism and apparently source/sink relations in Arabidopsis, while PFK3 and PFK6 only play a minor role under normal growth conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.