Investment casting offers high‐quality castings with good dimensional accuracy, being therefore suitable for aircraft applications. Since commercial ceramic shells react with Mg melts and appropriate inhibitors being not available, magnesium alloys are not widely used in industrial investment‐casting. In order to overcome this situation and enable the aircraft industry to take advantage of the light‐weight properties of magnesium, the process is analyzed within the European FP6 IDEA project, which aims at developing new high‐strength magnesium casting alloys for aeronautic applications.
A lot of innovations in molding and casting technology and also simulation techniques have made ductile iron more and more competitive and it even competes meanwhile against steel forgings. A successful substitution of steel forgings for example is the wheel carrier for a high volume car with the Georg Fischer new ductile iron material 'SiboDur', a ductile iron family with high strength and high elongation at the same time. But there is still a great potential for ductile iron castings to substitute steel forgings, in particular in the automotive industry. One example is the crankshaft for the engine: Quite a lot of gasoline engines are equipped with ductile iron crankshafts, but for instance most of the diesel engines are still running with forged steel cranks. The reason is mostly the belief of design engineers that it is not possible to get similar fatigue limit with castings com-pared to forged steel. This belief may often be correct, but using local strengthening technologies, such as roller burnishing of bearing fillets or inductive hardening of highly stressed areas can raise the fatigue limit of casted crankshafts dramatically. The paper presents studies which show that using the right ductile iron material and optimized roller burnishing conditions can raise the fatigue limit of cast crankshafts to values even higher than forged steel ones (material 38MnVS6). But even quenched and tempered forged steel crankshafts are in the focus to be substituted by castings. It is well known that ductile iron also can be induction hardened, but the induction hardening of ductile iron is still an empirical technology. This leads to the second part of the paper: In a cooperation of Georg Fischer and RWP a research project was carried out to develop a simulation technology to predict the residual stresses in a cast crankshaft due to induction hardening under different condi-tions. The results are very encouraging and enable us today to predetermine the induction hardening conditions to get optimized fatigue behavior of ductile iron crankshafts. Of course, the findings can also be used for other applications than crankshafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.