Ruminants are an important part of world animal production. The main factors affecting their production rates are age, diet, physiological condition and welfare. Disorders related to low level of welfare can significantly affect the microbiological composition of the digestive system, which is essential to maintain high production rates. The microbiology of the ruminant gastrointestinal tract may be significantly affected by inappropriate keeping system (especially in juveniles), psychological stress (e.g. transport), or heat stress. This results in an increased risk of metabolic diseases, reduced fertility and systemic diseases. Therefore, the paper focuses on selected disorders i.e., aforementioned inappropriate maintenance system, psychological stress, heat stress and their effects on the microbiome of the digestive system.
The demand for protein of animal origin and consumer awareness has been systematically increasing over recent years. This fact obliges breeders to provide animals with the best possible breeding conditions, which will condition the productivity of animals and the quality of products obtained from them. Nowadays, this is especially important because consumers are looking for food that is characterized by prohealth properties, a longer shelf life, and high sensory quality. Good results in improving the composition and quality of products of animal origin bring the use of nanominerals in animal nutrition. The purpose of this work was to collect and systematize knowledge related to the possibility of improving the composition and quality of animal products using minerals in the form of nanoparticles in animal nutrition.
Nowadays, there is a growing interest in environmental pollution; however, knowledge about this aspect is growing at an insufficient pace. There are many potential sources of environmental contamination, including sex hormones—especially estrogens. The analyzed literature shows that estrone (E1), estradiol (E2), estriol (E3), and synthetic ethinyloestradiol (EE2) are the most significant in terms of environmental impact. Potential sources of contamination are, among others, livestock farms, slaughterhouses, and large urban agglomerations. Estrogens occurring in the environment can negatively affect the organisms, such as animals, through phenomena such as feminization, dysregulation of natural processes related to reproduction, lowering the physiological condition of the organisms, disturbances in the regulation of both proapoptotic and anti-apoptotic processes, and even the occurrence of neoplastic processes thus drastically decreasing animal welfare. Unfortunately, the amount of research conducted on the negative consequences of their impact on animal organisms is many times smaller than that of humans, despite the great richness and diversity of the fauna. Therefore, there is a need for further research to help fill the gaps in our knowledge.
In recent years, a boost in the ruminant population has been observed, and consequently, an increase in the animals’ demand for nutrients and methane emissions. Methane emission is generated during the microbial fermentation of feed in the rumen, and a percentage even up to 12% of the energy obtained by this process can be wasted. In addition, the use of antibiotics in animal husbandry is being increasingly restricted. restricted. As a result, there is a continuous search for innovative feed additives that can serve as alternatives to antibiotics, and will also be safe for both people and the environment. In the present review article, additives were selected on basis that, according to studies conducted so far, may positively affect the microbiome of the digestive system by improving indicators and/or reducing methane production. Among them, probiotics, prebiotics or their combination—synbiotics are at the forefront of research. However, additives in the form of algae or plant origin are also gaining ground in popularity, such as essential oils, fermented wheat straw or Gelidium amansii, due to their general recognition as safe (GRAS) for both humans and environment.
Aquaculture is the most rapidly growing branch of animal production. The efficiency and quality of the produced food depends on sustainable management, water quality, feed prices and the incidence of diseases. Micro- (MP < 5 mm) and nanoplastic (NP < 1000 nm) particles are among the current factors causing serious water pollution. This substance comes solely from products manufactured by humans. MP particles migrate from the terrestrial to the aquatic environment and adversely affect, especially, the health of animals and humans by being a favorable habitat and vector for microbial pathogens and opportunists. More than 30 taxa of pathogens of humans, aquacutural animals and plants, along with opportunistic bacteria, have been detected in plastic-covering biofilm to date. The mobility and durability of the substance, combined with the relatively closed conditions in aquacultural habitats and pathogens’ affinity to the material, make plastic particles a microbiological medium threatening the industry of aquaculture. For this reason, in addition to the fact of plastic accumulation in living organisms, urgent measures should be taken to reduce its influx into the environment. The phenomenon and its implications are related to the concept of one health, wherein the environment, animals and humans affect each other’s fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.