Kida and Tucker-Drob recently extended the notion of inner amenability from countable groups to discrete p.m.p. groupoids. In this article, we show that inner amenable groupoids have “fixed priced 1” in the sense that every principal extension of an inner amenable groupoid has cost 1. This simultaneously generalizes and unifies two well known results on cost from the literature, namely, (1) a theorem of Kechris stating that every ergodic p.m.p. equivalence relation admitting a nontrivial asymptotically central sequence in its full group has cost 1, and (2) a theorem of Tucker-Drob stating that inner amenable groups have fixed price 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.