Inspired by progress in large-scale language modeling, we apply a similar approach towards building a single generalist agent beyond the realm of text outputs. The agent, which we refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy. The same network with the same weights can play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens. In this report we describe the model and the data, and document the current capabilities of Gato.
By harnessing a growing dataset of robot experience, we learn control policies for a diverse and increasing set of related manipulation tasks. To make this possible, we introduce reward sketching: an effective way of eliciting human preferences to learn the reward function for a new task. This reward function is then used to retrospectively annotate all historical data, collected for different tasks, with predicted rewards for the new task. The resulting massive annotated dataset can then be used to learn manipulation policies with batch reinforcement learning (RL) from visual input in a completely off-line way, i.e., without interactions with the real robot. This approach makes it possible to scale up RL in robotics, as we no longer need to run the robot for each step of learning. We show that the trained batch RL agents, when deployed in real robots, can perform a variety of challenging tasks involving multiple interactions among rigid or deformable objects. Moreover, they display a significant degree of robustness and generalization. In some cases, they even outperform human teleoperators.
Neural networks are prone to adversarial attacks. In general, such attacks deteriorate the quality of the input by either slightly modifying most of its pixels, or by occluding it with a patch. In this paper, we propose a method that keeps the image unchanged and only adds an adversarial framing on the border of the image. We show empirically that our method is able to successfully attack state-of-theart methods on both image and video classification problems. Notably, the proposed method results in a universal attack which is very fast at test time. Source code can be found at github.com/zajaczajac/adv_framing. * Equal contribution † ul.
Offline reinforcement learning (RL purely from logged data) is an important avenue for deploying RL techniques in real-world scenarios. However, existing hyperparameter selection methods for offline RL break the offline assumption by evaluating policies corresponding to each hyperparameter setting in the environment. This online execution is often infeasible and hence undermines the main aim of offline RL. Therefore, in this work, we focus on offline hyperparameter selection, i.e. methods for choosing the best policy from a set of many policies trained using different hyperparameters, given only logged data. Through large-scale empirical evaluation we show that: 1) offline RL algorithms are not robust to hyperparameter choices, 2) factors such as the offline RL algorithm and method for estimating Q values can have a big impact on hyperparameter selection, and 3) when we control those factors carefully, we can reliably rank policies across hyperparameter choices, and therefore choose policies which are close to the best policy in the set. Overall, our results present an optimistic view that offline hyperparameter selection is within reach, even in challenging tasks with pixel observations, high dimensional action spaces, and long horizon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.