BackgroundIn view of the current interest in exploring the clinical use of mesenchymal stem cells (MSCs) from different sources, we performed a side-by-side comparison of the biological properties of MSCs isolated from the Wharton’s jelly (WJ), the most abundant MSC source in umbilical cord, with bone marrow (BM)-MSCs, the most extensively studied MSC population.MethodsMSCs were isolated and expanded from BM aspirates of hematologically healthy donors (n = 18) and from the WJ of full-term neonates (n = 18). We evaluated, in parallel experiments, the MSC immunophenotypic, survival and senescence characteristics as well as their proliferative potential and cell cycle distribution. We also assessed the expression of genes associated with the WNT- and cell cycle-signaling pathway and we performed karyotypic analysis through passages to evaluate the MSC genomic stability. The hematopoiesis-supporting capacity of MSCs from both sources was investigated by evaluating the clonogenic cells in the non-adherent fraction of MSC co-cultures with BM or umbilical cord blood-derived CD34+ cells and by measuring the hematopoietic cytokines levels in MSC culture supernatants. Finally, we evaluated the ability of MSCs to differentiate into adipocytes and osteocytes and the effect of the WNT-associated molecules WISP-1 and sFRP4 on the differentiation potential of WJ-MSCs.ResultsBoth ex vivo-expanded MSC populations showed similar morphologic, immunophenotypic, survival and senescence characteristics and acquired genomic alterations at low frequency during passages. WJ-MSCs exhibited higher proliferative potential, possibly due to upregulation of genes that stimulate cell proliferation along with downregulation of genes related to cell cycle inhibition. WJ-MSCs displayed inferior lineage priming and differentiation capacity toward osteocytes and adipocytes, compared to BM-MSCs. This finding was associated with differential expression of molecules related to WNT signaling, including WISP1 and sFRP4, the respective role of which in the differentiation potential of WJ-MSCs was specifically investigated. Interestingly, treatment of WJ-MSCs with recombinant human WISP1 or sFRP4 resulted in induction of osteogenesis and adipogenesis, respectively. WJ-MSCs exhibited inferior hematopoiesis-supporting potential probably due to reduced production of stromal cell-Derived Factor-1α, compared to BM-MSCs.ConclusionsOverall, these data are anticipated to contribute to the better characterization of WJ-MSCs and BM-MSCs for potential clinical applications.
Myelodysplastic syndromes comprise a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by ineffective bone marrow (BM) hematopoiesis, peripheral blood cytopenias and substantial risk for progression to acute myeloid leukemia. It is generally accepted that myelodysplastic syndromes originate as a result of multistep leukemogenesis, implicating genetic, epigenetic and immune-mediated alterations of an early hematopoietic stem cell. However, alterations in the BM microenvironment in terms of abnormal hematopoietic-to-stromal cell interactions, relative deficiency of hematopoietic growth factors and aberrant release of inhibitors may also have a role in myelodysplastic syndrome (MDS) pathogenesis. The possible involvement of the BM mesenchymal stem cells (MSC) in the pathogenetic/pathophysiologic process of MDS has been recently studied but existing data on MSCs' cytogenetic and functional integrity are controversial. Notably, in our study we did not find any significant quantitative or qualitative deficits in MDS-derived MSCs. As no conclusive data on the characteristics of BM MSCs have been reported so far, future studies should aim at elucidating whether BM MSCs belong primarily to the abnormal clone or whether they are indirectly damaged and whether they might be safely used for therapeutic purposes in MDS patients. This article aims to give an overview of the current state of the art on the quantitative, functional, immunoregulatory and cytogenetic properties of BM MSCs in MDS.
Immune-mediated bone marrow failure syndromes (BMFS) are characterized by ineffective marrow haemopoiesis and subsequent peripheral cytopenias. Ineffective haemopoiesis is the result of a complex marrow deregulation including genetic, epigenetic, and immune-mediated alterations in haemopoietic stem/progenitor cells, as well as abnormal haemopoietic-to-stromal cell interactions, with abnormal release of haemopoietic growth factors, chemokines, and inhibitors. Mesenchymal stem/stromal cells (MSCs) and their progeny (i.e., osteoblasts, adipocytes, and reticular cells) are considered as key cellular components of the bone marrow haemopoietic niche. MSCs may interfere with haemopoietic as well as immune regulation. Evidence suggests that bone marrow MSCs may be involved in immune-mediated BMFS underlying pathophysiology, harboring either native abnormalities and/or secondary defects, caused by exposure to activated marrow components. This review summarizes previous as well as more recent information related to the biologic/functional characteristics of bone marrow MSCs in myelodysplastic syndromes, acquired aplastic anemia, and chronic idiopathic neutropenia.
In this study the EA.hy 926 endothelial cell line--simulating endothelial cells--was treated with imatinib in order to define a possible anti-angiogenic role for imatinib. Dose and time response experiments were performed. Cell morphology was studied, while migration efficiency, intercellular permeability and VE-cadherin expression were assayed, both in the presence and in the absence of imatinib. Imatinib-induced EA.hy 926 cell apoptosis was also examined. Results showed that imatinib reduced the endothelial cell population, changed cell monolayer morphology and reduced cell-to-cell cohesiveness. Migration efficiency was significantly decreased while intercellular permeability was 2.76-fold increased in the presence of imatinib. Indirect immunofluorescence microscopy showed nearly complete down-regulation of VE cadherin in imatinib-treated cells. Furthermore, apoptotic activity was detected in imatinib-treated cells. Altogether our results support an antiangiogenic profile for imatinib that possibly contributes to its therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.