Objective High prevalence of diabetes mellitus (DM) along with the poor health outcomes and the escalated costs of treatment and care poses the need to focus on prevention, early detection and improved management of the disease. The aim of this paper is to present and discuss the latest accomplishments in sensors for glucose and lifestyle monitoring along with clinical decision support systems (CDSSs) facilitating self-disease management and supporting healthcare professionals in decision making. Methods A critical literature review analysis is conducted focusing on advances in: 1) sensors for physiological and lifestyle monitoring, 2) models and molecular biomarkers for predicting the onset and assessing the progress of DM, and 3) modeling and control methods for regulating glucose levels. Results Glucose and lifestyle sensing technologies are continuously evolving with current research focusing on the development of noninvasive sensors for accurate glucose monitoring. A wide range of modeling, classification, clustering, and control approaches have been deployed for the development of the CDSS for diabetes management. Sophisticated multiscale, multilevel modeling frameworks taking into account information from behavioral down to molecular level are necessary to reveal correlations and patterns indicating the onset and evolution of DM. Conclusion Integration of data originating from sensor-based systems and electronic health records combined with smart data analytics methods and powerful user centered approaches enable the shift toward preventive, predictive, personalized, and participatory diabetes care. Significance The potential of sensing and predictive modeling approaches toward improving diabetes management is highlighted and related challenges are identified.
The estimation of long-term diabetes complications risk is essential in the process of medical decision making. Guidelines for the management of Type 2 Diabetes Mellitus (T2DM) advocate calculating the Cardiovascular Disease (CVD) risk to initiate appropriate treatment. The objective of this study is to investigate the use of sophisticated machine learning techniques toward the development of personalized models able to predict the risk of fatal or nonfatal CVD incidence in T2DM patients. The important challenge of handling the unbalanced nature of the available dataset is addressed by applying novel ensemble strategies. Hybrid Wavelet Neural Networks (HWNNs) and Self-Organizing Maps (SOMs) constitute the primary models for building ensembles following a subsampling approach. Different methods for combining the decisions of the primary models are applied and comparatively assessed. Data from the 5-year follow up of 560 patients with T2DM are used for development and evaluation purposes. The highest discrimination performance (Area Under the Curve (AUC): 71.48%) is achieved by taking into account both the HWNN- and SOM- based primary models' outputs. The proposed method is superior to the Binomial Linear Regression (BLR) model justifying the need to apply more sophisticated techniques in order to produce reliable CVD risk scores.
The present work presents the comparative assessment of four glucose prediction models for patients with type 1 diabetes mellitus (T1DM) using data from sensors monitoring blood glucose concentration. The four models are based on a feedforward neural network (FNN), a self-organizing map (SOM), a neuro-fuzzy network with wavelets as activation functions (WFNN), and a linear regression model (LRM), respectively. For the development and evaluation of the models, data from 10 patients with T1DM for a 6-day observation period have been used. The models' predictive performance is evaluated considering a 30-, 60- and 120-min prediction horizon, using both mathematical and clinical criteria. Furthermore, the addition of input data from sensors monitoring physical activity is considered and its effect on the models' predictive performance is investigated. The continuous glucose-error grid analysis indicates that the models' predictive performance benefits mainly in the hypoglycemic range when additional information related to physical activity is fed into the models. The obtained results demonstrate the superiority of SOM over FNN, WFNN, and LRM with SOM leading to better predictive performance in terms of both mathematical and clinical evaluation criteria.
SMARTDIAB is a platform designed to support the monitoring, management, and treatment of patients with type 1 diabetes mellitus (T1DM), by combining state-of-the-art approaches in the fields of database (DB) technologies, communications, simulation algorithms, and data mining. SMARTDIAB consists mainly of two units: 1) the patient unit (PU); and 2) the patient management unit (PMU), which communicate with each other for data exchange. The PMU can be accessed by the PU through the internet using devices, such as PCs/laptops with direct internet access or mobile phones via a Wi-Fi/General Packet Radio Service access network. The PU consists of an insulin pump for subcutaneous insulin infusion to the patient and a continuous glucose measurement system. The aforementioned devices running a user-friendly application gather patient's related information and transmit it to the PMU. The PMU consists of a diabetes data management system (DDMS), a decision support system (DSS) that provides risk assessment for long-term diabetes complications, and an insulin infusion advisory system (IIAS), which reside on a Web server. The DDMS can be accessed from both medical personnel and patients, with appropriate security access rights and front-end interfaces. The DDMS, apart from being used for data storage/retrieval, provides also advanced tools for the intelligent processing of the patient's data, supporting the physician in decision making, regarding the patient's treatment. The IIAS is used to close the loop between the insulin pump and the continuous glucose monitoring system, by providing the pump with the appropriate insulin infusion rate in order to keep the patient's glucose levels within predefined limits. The pilot version of the SMARTDIAB has already been implemented, while the platform's evaluation in clinical environment is being in progress.
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.