Adenosine-to-inosine (A-to-I) RNA editing was recently shown to be abundant in the human transcriptome, affecting thousands of genes. Employing a bioinformatic approach, we identified significant global hypoediting of Alu repetitive elements in brain, prostate, lung, kidney, and testis tumors. Experimental validation confirmed this finding, showing significantly reduced editing in Alu sequences within MED13 transcripts in brain tissues. Looking at editing of specific recoding and noncoding sites, including in cancer-related genes, a more complex picture emerged, with a gene-specific editing pattern in tumors vs. normal tissues. Additionally, we found reduced RNA levels of all three editing mediating enzymes, ADAR, ADARB1, and ADARB2, in brain tumors. The reduction of ADARB2 correlated with the grade of malignancy of glioblastoma multiforme, the most aggressive of brain tumors, displaying a 99% decrease in ADARB2 RNA levels. Consistently, overexpression of ADAR and ADARB1 in the U87 glioblastoma multiforme cell line resulted in decreased proliferation rate, suggesting that reduced A-to-I editing in brain tumors is involved in the pathogenesis of cancer. Altered epigenetic control was recently shown to play a central role in oncogenesis. We suggest that A-to-I RNA editing may serve as an additional epigenetic mechanism relevant to cancer development and progression.
Myelination in the peripheral nervous system requires close contact between Schwann cells and the axon, but the underlying molecular basis remains largely unknown. Here we show that cell adhesion molecules (CAMs) of the Nectin-like (Necl, also known as SynCAM or Cadm) family mediate Schwann cell-axon interaction during myelination. Necl4 is the main Necl expressed by myelinating Schwann cells and is located along the internodes in direct apposition to Necl1, which is localized on axons. Necl4 serves as the glial binding partner for axonal Necl1, and the interaction between these two CAMs mediates Schwann cell adhesion. Furthermore, the disruption of the interaction between Necl1 and Necl4 by their soluble extracellular domains, as well as the expression of a dominant negative Necl4 in Schwann cells, inhibits myelination. These results suggest a critical role for Necl proteins in mediating axon-glia contact during myelination in peripheral nerves.
Suppressors of cytokine signaling (SOCS) are Src homology-2-containing proteins originally identified as negative regulators of cytokine signaling. Accumulating evidence indicates a role for SOCS proteins in the regulation of additional signaling pathways including receptor tyrosine kinases. Notably, SOCS36E, the Drosophila ortholog of mammalian SOCS5, was recently implicated as a negative regulator of the Drosophila ortholog of EGFR. In this study, we aimed at characterizing the role of SOCS5 in the negative regulation of EGFR. Here we show that the expression of SOCS5 and its closest homolog SOCS4 is elevated in cells following treatment with EGF, similar to several negative feedback regulators of EGFR whose expression is up-regulated upon receptor activation. The expression of SOCS5 led to a marked reduction in EGFR expression levels by promoting EGFR degradation. The reduction in EGFR levels and EGF-induced signaling in SOCS5-expressing cells requires both the Src homology-2 and SOCS box domains of SOCS5. Interestingly, EGFR is degraded by SOCS5 prior to EGF treatment in a ligand-and c-Cbl-independent manner. SOCS5 can associate with EGFR and can also bind the ElonginBC protein complex via its SOCS box, which may recruit an E3 ubiquitin ligase to promote EGFR degradation. Thus, we have characterized a novel function for SOCS5 in regulating EGFR and discuss its potential role in controlling EGFR homeostasis.
The tumor suppressor gene p53 controls cellular response to a variety of stress conditions, including DNA damage and hypoxia, leading to growth arrest and͞or apoptosis. Inactivation of p53, found in 40 -50% of human cancers, confers selective advantage under hypoxic microenvironment during tumor progression. The mole rat, Spalax, spends its entire life cycle underground at decidedly lower oxygen tensions than any other mammal studied. Because a wide range of respiratory adaptations to hypoxic stress evolved in Spalax, we speculated that it might also have developed hypoxia adaptation mechanisms analogous to the genetic͞epige-netic alterations acquired during tumor progression. Comparing Spalax with human and mouse p53 revealed an arginine (R) to lysine (K) substitution in Spalax (Arg-174 in human) in the DNAbinding domain, identical to known tumor associated mutations. Multiple p53 sequence alignments with 41 additional species confirmed that Arg-174 is highly conserved. Reporter assays uncovered that Spalax p53 protein is unable to induce apoptosisregulating target genes, resulting in no expression of apaf1 and partial expression of puma, pten, and noxa. However, cell cycle arrest and p53 stabilization͞homeostasis genes were overactivated by Spalax p53. Lys-174 was found critical for apaf1 expression inactivation. A DNA-free p53 structure model predicts that Arg-174 is important for dimerization, whereas Spalax Lys-174 prevents such interactions. Similar neighboring mutations found in human tumors favor growth arrest rather than apoptosis. We hypothesize that, in an analogy with human tumor progression, Spalax underwent remarkable adaptive p53 evolution during 40 million years of underground hypoxic life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.