The intuitive control of upper - limb prostheses requires a man/machine interface that directly exploits biological signals. Here, we define and experimentally test an offline man/machine interface that takes advantage of the discharge timings of spinal moto r neurons. The motor - neuron behaviour is identified by deconvolution of the electrical activity of muscles reinnervated by nerves of a missing limb in patients with amputation at the shoulder or humeral level. We mapped the series of motor - neuron discharge s into control commands across multiple degrees of freedom via the offline application of direct proportional control, pattern recognition and musculoskeletal modelling. A series of experiments performed on six patients reveal that the man/machine interfac e has superior offline performance than conventional direct electromyographic control applied after targeted muscle innervation. The combination of surgical procedures, decoding and mapping into effective commands constitutes an interface with the output l ayers of the spinal cord circuitry that allows for the intuitive control of multiple degrees of freedom
Targeted muscle reinnervation (TMR) amplifies the electrical activity of nerves at the stump of amputees by redirecting them in remnant muscles above the amputation. The electrical activity of the reinnervated muscles can be used to extract natural control signals. Nonetheless, current control systems, mainly based on noninvasive muscle recordings, fail to provide accurate and reliable control over time. This is one of the major reasons for prosthetic abandonment. This prospective interventional study includes three unilateral above-elbow amputees and reports the long-term (2.5 years) implant of wireless myoelectric sensors in the reinnervation sites after TMR and their use for control of robotic arms in daily life. It therefore demonstrates the clinical viability of chronically implanted myoelectric interfaces that amplify nerve activity through TMR. The patients showed substantial functional improvements using the implanted system compared with control based on surface electrodes. The combination of TMR and chronically implanted sensors may drastically improve robotic limb replacement in above-elbow amputees.
Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.
BackgroundPeripheral nerve injury in the upper extremity is linked to high socioeconomic burden, yet cost-analyses are rare and from small cohorts. The objective of this study was to determine the costs and long-term socioeconomic effects of peripheral nerve injuries in the upper extremity in Germany.
MethodsWe analyzed data of 250 patients with 268 work-related upper extremity nerve injuries from acute treatment to long-term follow-up on rehabilitation, sick-leave and disability-pension.
ResultsPatients were on average 39.9±14.2 years old, male (85%) and mean inpatient treatment was 7±6 days. Location of nerve was 8% (N = 19) proximal to the wrist, 26% (N = 65) at the wrist and metacarpus, and 66% (N = 166) at phalangeal level. Acute in-patient treatment for (single) median nerve injury accounted for 66% with hospital reimbursement of 3.570€, ulnar nerve injury for 24% and 2.650€ and radial nerve injury for 10% and 3.166€, all including finger nerve injuries. The remaining were combined nerve injuries, with significantly higher costs, especially if combined with tendon 5.086€ or vascular injury 4.886€. Based on location, nerve injuries proximal to the wrist averaged 5.360±6.429€, at the wrist and metacarpus 3.534±2.710€ and at the phalangeal level 3.418±3.330€. 16% required rehabilitation with average costs of 5.842€ and stay of 41±21 days. Sick leave was between 11-1109 days with an average of 147 days with socioeconomic costs of 197€/day, equaling on average 17.640€. 30% received a mean yearly disability pension of 3.187€, that would account to 102.167€ per lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.