A facile method for Ni/NHC catalyzed C–H alkylation and alkenylation of heteroarenes with alkenes and internal alkynes using air-tolerant nickelocene, sodium formate and NHC·HCl salts for in situ catalyst generation has been developed.
Imidazolium salts have ubiquitous applications in energy research, catalysis, materials and medicinal sciences. Here, we report a new strategy for the synthesis of diverse heteroatom-functionalized imidazolium and imidazolinium salts from easily available 1,4-diaza-1,3-butadienes in one step. The strategy relies on a discovered family of unprecedented nucleophilic addition/cyclization reactions with trialkyl orthoformates and heteroatomic nucleophiles. To probe general areas of application, synthesized N-heterocyclic carbene (NHC) precursors were feasible for direct metallation to give functionalized M/carbene complexes (M = Pd, Ni, Cu, Ag, Au), which were isolated in individual form. The utility of the chloromethyl function for the postmodification of the synthesized salts and Pd/carbene complexes was demonstrated. The obtained complexes and imidazolium salts demonstrated good activities in Pd-or Ni-catalyzed model cross-coupling and CÀ H activation reactions.
An efficient method for the C(2)−H arylation of (benz)imidazoles and (benz)oxazoles with aryl chlorides and aryl bromides under Ni/NHC catalysis has been developed. The main benefit of the method is the in situ generation of active Ni/NHC complexes from the air‐tolerant bench‐stable precursors NiCl2Py2, IMes⋅HCl, and potassium tert‐butoxide, which plays a dual role as base and Ni(II) to Ni(0) reductant. The approach represents a user‐friendly alternative for procedures relying on the use of toxic phosphine ligands or unstable air‐sensitive Ni(cod)2. The concept highlighted in the present study shows that mapping a competitive picture of catalyst dynamics and revealing the competitive processes towards the destruction and stabilization of catalytically active species enables a highly efficient catalytic system to be built under simple conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.