The targeted incorporation of defects into crystalline matter allows for the manipulation of many properties and has led to relevant discoveries for optimized and even novel technological applications of materials. It is therefore exciting to see that defects are now recognized to be similarly useful in tailoring properties of metal-organic frameworks (MOFs). For instance, heterogeneous catalysis crucially depends on the number of active catalytic sites as well as on diffusion limitations. By the incorporation of missing linker and missing node defects into MOFs, both parameters can be accessed, improving the catalytic properties. Furthermore, the creation of defects allows for adding properties such as electronic conductivity, which are inherently absent in the parent MOFs. Herein, progress of the rapidly evolving field of the past two years is overviewed, putting a focus on properties that are altered by the incorporation and even tailoring of defects in MOFs. A brief account is also given on the emerging quantitative understanding of defects and heterogeneity in MOFs based on scale-bridging computational modeling and simulations.
Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.
By employing the mixed-component, solid-solution approach, various functionalized ditopic isophthalate (ip) defect-generating linkers denoted 5-X-ipH2 , where X=OH (1), H (2), NH2 (3), Br (4), were introduced into the mixed-valent ruthenium analogue of [Cu3 (btc)2 ]n (HKUST-1, btc=benzene-1,3,5-tricarboxylate) to yield Ru-DEMOFs (defect-engineered metal-organic frameworks) of the general empirical formula [Ru3 (btc)2-x (5-X-ip)x Yy ]n . Framework incorporation of 5-X-ip was confirmed by powder XRD, FTIR spectroscopy, ultrahigh-vacuum IR spectroscopy, thermogravimetric analysis, (1) H NMR spectroscopy, N2 sorption, and X-ray absorption near edge structure. Interestingly, Ru-DEMOF 1 c with 32 % framework incorporation of 5-OH-ip shows the highest BET surface area (≈1300 m(2) g(-1) , N2 adsorption, 77 K) among all materials (including the parent framework [Ru3 (btc)2 Yy ]n ). The characterization data are consistent with two kinds of structural defects induced by framework incorporation of 5-X-ip: modified paddlewheel nodes featuring reduced ruthenium sites (Ru(δ+) , 0<δ<2, type A) and missing nodes leading to enhanced porosity (type B). Their relative abundances depend on the choice of the functional group X in the defect linkers. Defects A and B also appeared to play a key role in sorption of small molecules (i.e., CO2 , CO, H2 ) and the catalytic properties of the materials (i.e., ethylene dimerization and the Paal-Knorr reaction).
Host‐guest inclusion properties of UiO‐66 and UiO‐67 metal‐organic frameworks have been studied using ferrocene (FeCp2) as probe molecule. According to variable‐temperature solid‐state 1H and 13C CP‐MAS‐NMR, two different environments exist for adsorbed FeCp2 inside UiO‐66 and UiO‐67, which have been assigned to octahedral and tetrahedral cavities. At room temperature, a rapid exchange between these two adsorption sites occurs in UiO‐67, while at –80 °C the intracrystalline traffic of FeCp2 through the triangular windows is largely hindered. In UiO‐66, FeCp2 diffusion is already impeded at room temperature, in agreement with the smaller pore windows. Palladium nanoparticles (Pd NPs) encapsulated inside UiO‐66 and UiO‐67 have been prepared by chemical vapor infiltration of (allyl)Pd(Cp) followed by UV light irradiation. Infiltration must be carried out at low temperature (–10 °C) to avoid uncontrolled decomposition of the organometallic precursor and formation of Pd NPs at the external surface of the MOF. The resulting Pd‐MOFs are shape selective catalysts, as shown for the hydrogenation of carbonyl compounds with different steric hindrance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.