Memristive devices are electronic elements with memory properties. This feature marks them out as possible candidates for mimicking synapse properties. Development of systems capable of performing simple brain operations demands a high level of integration of elements and their 3D organization into networks. Here, we demonstrate the formation and electrical properties of stochastic polymeric matrices. Several features of the network revealed similarities with those of the nervous system. In particular, applying different training protocols, we obtained two kinds of learning comparable to the “baby” and “adult” learning in animals and humans. To mimic “adult” learning, multi-task training was applied simultaneously resulting in the formation of few parallel pathways for a given task, modifiable by successive training. To mimic “baby” learning (imprinting), single task training was applied at one time, resulting in the formation of multiple parallel signal pathways, scarcely influenced by successive training
This paper investigates the original circuit theory on stopband (SB) negative group delay (NGD) passive topology. The basic specifications of SB-NGD function are defined by considering the voltage transfer function (VTF) of the passive circuit. An original design method and experimentation tests of SB-NGD circuit are developed. The innovative theoretical analysis is elaborated from both magnitude and GD analytical expression of the VTF model from the resonant LC-series network passive topology. The mathematical existence condition of SB-NGD aspect is analytically explored in function of R, L, and C component parameters. The formulations of the basic equations enabling the calculation of the lumped components of the SB-NGD passive circuit in function of the desired specifications as NGD cut-off frequencies, NGD value and attenuation are established. To confirm the effectiveness of the original SB-NGD circuit theory, a proof-of-concept (POC) of SB-NGD circuit board is designed, simulated, fabricated, and experimented. As expected, despite the equivalent series resistor (ESR) effect of the inductor element, the theoretical modelling, simulation and measurement results are in good agreement. The SB-NGD behavior is confirmed with lower and upper cut-off frequencies, 0.7 kHz and 1.35 kHz, respectively. Furthermore, the corresponding NGD minimal values are −33 µs and −11 µs, respectively.
Langmuir-Shaefer films of a polyaniline-gold nanoparticle composite were fabricated and characterized. The thickness of each deposited monolayer, determined with AFM, was found to be about 0.8 nm. The film morphology was studied by SEM, revealing the presence of embedded spherical-shaped gold nanoparticles of about 5-10 nm in diameter. The fabricated films were used as the active channel of the organic memristor. Its electric characterisation has revealed new phenomena, such as an increased working voltage range and sigmoidal voltage current characteristics that were connected to the charge trapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.