Automated medical image analysis has a significant value in diagnosis and treatment of lesions. Brain tumors segmentation has a special importance and difficulty due to the difference in appearances and shapes of the different tumor regions in magnetic resonance images. Additionally the data sets are heterogeneous and usually limited in size in comparison with the computer vision problems. The recently proposed adversarial training has shown promising results in generative image modeling. In this paper we propose a novel end-to-end trainable architecture for brain tumor semantic segmentation through conditional adversarial training. We exploit conditional Generative Adversarial Network (cGAN) and train a semantic segmentation Convolution Neural Network (CNN) along with an adversarial network that discriminates segmentation maps coming from the ground truth or from the segmentation network for BraTS 2017 segmentation task [15,4,2,3]. We also propose an end-to-end trainable CNN for survival day prediction based on deep learning techniques for BraTS 2017 prediction task [15,4,2,3]. The experimental results demonstrate the superior ability of the proposed approach for both tasks. The proposed model achieves on validation data a DICE score, Sensitivity and Specificity respectively 0.68, 0.99 and 0.98 for the whole tumor, regarding online judgment system.
We propose a new generative adversarial architecture to mitigate imbalance data problem in medical image semantic segmentation where the majority of pixels are belong to healthy region and few belong to lesion or non-health region. A model trained with imbalanced data tends to bias toward healthy data which is not desired in clinical applications and predicted outputs by these networks have high precision and low sensitivity. We propose a new conditional generative refinement network with three components: a generative, a discriminative, and a refinement network to mitigate unbalanced data problem through ensemble learning. The generative network learns to segment at the pixel level by getting feedback from the discriminative network according to the true positive and true negative maps. On the other hand, the refinement network learns to predict the false positive and the false negative masks produced by the generative network that has significant value especially in medical application. The final semantic segmentation masks are then composed by the output of the three networks. The proposed architecture shows state-of-theart results on LiTS-2017 for liver lesion segmentation, and two microscopic cell segmentation datasets MDA231, PhC-HeLa. We have achieved competitive results on BraTS-2017 for brain tumour segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.