TRIM24 (TIF1α), TRIM28 (TIF1β), and TRIM33 (TIF1γ) are three related cofactors belonging to the tripartite motif superfamily that interact with distinct transcription factors. TRIM24 interacts with the liganded retinoic acid (RA) receptor to repress its transcriptional activity. Germ line inactivation of TRIM24 in mice deregulates RA-signaling in hepatocytes leading to the development of hepatocellular carcinoma (HCC). Here we show that TRIM24 can be purified as at least two macromolecular complexes comprising either TRIM33 or TRIM33 and TRIM28. Somatic hepatocyte-specific inactivation of TRIM24, TRIM28, or TRIM33 all promote HCC in a cell-autonomous manner in mice. Moreover, HCC formation upon TRIM24 inactivation is strongly potentiated by further loss of TRIM33. These results demonstrate that the TIF1-related subfamily of TRIM proteins interact both physically and functionally to modulate HCC formation in mice.
Pioneer transcription factors establish new cell-fate competence by triggering chromatin remodeling. However, many features of pioneer action, such as their kinetics and stability, remain poorly defined. Here, we show that Pax7, by opening a unique repertoire of enhancers, is necessary and sufficient for specification of one pituitary lineage. Pax7 binds its targeted enhancers rapidly, but chromatin remodeling and gene activation are slower. Enhancers opened by Pax7 show a loss of DNA methylation and acquire stable epigenetic memory, as evidenced by binding of nonpioneer factors after Pax7 withdrawal. This work shows that transient Pax7 expression is sufficient for stable specification of cell identity.
The anterior and intermediate lobes of the pituitary gland derive from the surface ectoderm. They provide a simple system to assess mechanisms of developmental identity established by tissue determinants. Each lobe contains a lineage expressing the hormone precursor pro-opiomelanocortin (POMC): the corticotropes and melanotropes. The T-box transcription factor Tpit controls terminal differentiation of both lineages. We now report on the unique role of Pax7 as a selector of intermediate lobe and melanotrope identity. Inactivation of the Pax7 gene results in loss of melanotrope gene expression and derepression of corticotrope genes. Pax7 acts by remodeling chromatin and allowing Tpit binding to a new subset of enhancers for activation of melanotrope-specific genes. Thus, the selector function of Pax7 is exerted through pioneer transcription factor activity. Genome-wide, the Pax7 pioneer activity is preferentially associated with composite binding sites that include paired and homeodomain motifs. Pax7 expression is conserved in human and dog melanotropes and defines two subtypes of pituitary adenomas causing Cushing's disease. In summary, expression of Pax7 provides a unique tissue identity to the pituitary intermediate lobe that alters Tpit-driven differentiation through pioneer and classical transcription factor activities.
Hepatocellular carcinoma (HCC) is a major cause of death worldwide. Here, we provide evidence that the ligand-dependent nuclear receptor co-regulator Trim24 (also known as Tif1alpha) functions in mice as a liver-specific tumor suppressor. In Trim24-null mice, hepatocytes fail to execute proper cell cycle withdrawal during the neonatal-to-adult transition and continue to cycle in adult livers, becoming prone to a continuum of cellular alterations that progress toward metastatic HCC. Using pharmacological approaches, we show that inhibition of retinoic acid signaling markedly reduces hepatocyte proliferation in Trim24-/- mice. We further show that deletion of a single retinoic acid receptor alpha (Rara) allele in a Trim24-null background suppresses HCC development and restores wild-type expression of retinoic acid-responsive genes in the liver, thus demonstrating that in this genetic background Rara expresses an oncogenic activity correlating with a dysregulation of the retinoic acid signaling pathway. Our results not only provide genetic evidence that Trim24 and Rara co-regulate hepatocarcinogenesis in an antagonistic manner but also suggest that aberrant activation of Rara is deleterious to liver homeostasis.
SUMMARYThe definition of embryonic potency and induction of specific cell fates are intimately linked to the tight control over TGF signaling. Although extracellular regulation of ligand availability has received considerable attention in recent years, surprisingly little is known about the intracellular factors that negatively control Smad activity in mammalian tissues. By means of genetic ablation, we show that the Smad4 inhibitor ectodermin (Ecto, also known as Trim33 or Tif1) is required to limit Nodal responsiveness in vivo. New phenotypes, which are linked to excessive Nodal activity, emerge from such a modified landscape of Smad responsiveness in both embryonic and extra-embryonic territories. In extra-embryonic endoderm, Ecto is required to confine expression of Nodal antagonists to the anterior visceral endoderm. In trophoblast cells, Ecto precisely doses Nodal activity, balancing stem cell self-renewal and differentiation. Epiblast-specific Ecto deficiency shifts mesoderm fates towards node/organizer fates, revealing the requirement of Smad inhibition for the precise allocation of cells along the primitive streak. This study unveils that intracellular negative control of Smad function by ectodermin/Tif1 is a crucial element in the cellular response to TGF signals in mammalian tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.