Hall effect thrusters are one of the most versatile and popular electric propulsion systems for space use. Industry trends towards interplanetary missions arise advances in design development of such propulsion systems. It is understood that correct sizing of discharge channel in Hall effect thruster impact performance greatly. Since the complete physics model of such propulsion system is not yet optimized for fast computations and design iterations, most thrusters are being designed using so-called scaling laws. But this work focuses on rather novel approach, which is outlined less frequently than ordinary scaling design approach in literature. Using deep machine learning it is possible to create predictive performance model, which can be used to effortlessly get design of required hall thruster with required characteristics using way less computing power than design from scratch and way more flexible than usual scaling approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.