Intestinal microbiota is known to be important in health and disease. Its composition is influenced by both environmental and host factors. Few large-scale studies have evaluated the association between host genetic variation and the composition of microbiota. We recruited a cohort of 1,561 healthy individuals, of whom 270 belong in 123 families, and found that almost one-third of fecal bacterial taxa were heritable. In addition, we identified 58 SNPs associated with the relative abundance of 33 taxa in 1,098 discovery subjects. Among these, four loci were replicated in a second cohort of 463 subjects: rs62171178 (nearest gene UBR3) associated with Rikenellaceae, rs1394174 (CNTN6) associated with Faecalibacterium, rs59846192 (DMRTB1) associated with Lachnospira, and rs28473221 (SALL3) associated with Eubacterium. After correction for multiple testing, 6 of the 58 associations remained significant, one of which replicated. These results identify associations between specific genetic variants and the gut microbiome.
Patients with late‐stage Kellgren‐Lawrence knee osteoarthritis received a single intra‐articular injection of 1, 10, or 50 million bone marrow mesenchymal stromal cells (BM‐MSCs) in a phase I/IIa trial to assess safety and efficacy using a broad toolset of analytical methods. Besides safety, outcomes included patient‐reported outcome measures (PROMs): Knee Injury and Osteoarthritis Outcome Score (KOOS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC); contrast‐enhanced magnetic resonance imaging (MRI) for cartilage morphology (Whole Organ MRI Scores [WORMS]), collagen content (T2 scores), and synovitis; and inflammation and cartilage turnover biomarkers, all over 12 months. BM‐MSCs were characterized by a panel of anti‐inflammatory markers to predict clinical efficacy. There were no serious adverse events, although four patients had minor, transient adverse events. There were significant overall improvements in KOOS pain, symptoms, quality of life, and WOMAC stiffness relative to baseline; the 50 million dose achieved clinically relevant improvements across most PROMs. WORMS and T2 scores did not change relative to baseline. However, cartilage catabolic biomarkers and MRI synovitis were significantly lower at higher doses. Pro‐inflammatory monocytes/macrophages and interleukin 12 levels decreased in the synovial fluid after MSC injection. The panel of BM‐MSC anti‐inflammatory markers was strongly predictive of PROMs over 12 months. Autologous BM‐MSCs are safe and result in significant improvements in PROMs at 12 months. Our analytical tools provide important insights into BM‐MSC dosing and BM‐MSC reduction of synovial inflammation and cartilage degradation and provide a highly predictive donor selection criterion that will be critical in translating MSC therapy for osteoarthritis. Stem Cells Translational Medicine 2019;8:746&757
Objective. MicroRNA-34a-5p (miR-34a-5p) expression is elevated in the synovial fluid of patients with late-stage knee osteoarthritis (OA); however, its exact role and therapeutic potential in OA remain to be fully elucidated. This study was undertaken to examine the role of miR-34a-5p in OA pathogenesis. Methods. Expression of miR-34a-5p was determined in joint tissues and human plasma (n = 71). Experiments using miR-34a-5p mimic or antisense oligonucleotide (ASO) treatment were performed in human OA chondrocytes, fibroblast-like synoviocytes (FLS) (n = 7-9), and mouse OA models, including destabilization of the medial meniscus (DMM; n = 22) and the accelerated, more severe model of mice fed a high-fat diet and subjected to DMM (n = 11). Wildtype (WT) mice (n = 9) and miR-34a-knockout (KO) mice (n = 11) were subjected to DMM. Results were expressed as the mean ± SEM and analyzed by t-test or analysis of variance, with appropriate post hoc tests. P values less than 0.05 were considered significant. RNA sequencing was performed on WT and KO mouse chondrocytes. Results. Expression of miR-34a-5p was significantly increased in the plasma, cartilage, and synovium of patients with late-stage OA and in the cartilage and synovium of mice subjected to DMM. Plasma miR-34a-5p expression was significantly increased in obese patients with late-stage OA, and in the plasma and knee joints of mice fed a high-fat diet. In human OA chondrocytes and FLS, miR-34a-5p mimic increased key OA pathology markers, while miR-34a-5p ASO improved cellular gene expression. Intraarticular miR-34a-5p mimic injection induced an OA-like phenotype. Conversely, miR-34a-5p ASO injection imparted cartilage-protective effects in the DMM and high-fat diet/DMM models. The miR-34a-KO mice exhibited protection against DMM-induced cartilage damage. RNA sequencing of WT and KO chondrocytes revealed a putative miR-34a-5p signaling network. Conclusion. Our findings provide comprehensive evidence of the role and therapeutic potential of miR-34a-5p in OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.