Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics.
Background Although advanced medical imaging technologies give detailed diagnostic information, a low-dose, fast, and inexpensive option for early detection of respiratory diseases and follow-ups is still lacking. The novel method of x-ray dark-field chest imaging might fill this gap but has not yet been studied in living humans. Enabling the assessment of microstructural changes in lung parenchyma, this technique presents a more sensitive alternative to conventional chest x-rays, and yet requires only a fraction of the dose applied in CT. We studied the application of this technique to assess pulmonary emphysema in patients with chronic obstructive pulmonary disease (COPD). MethodsIn this diagnostic accuracy study, we designed and built a novel dark-field chest x-ray system (Technical University of Munich, Munich, Germany)-which is also capable of simultaneously acquiring a conventional thorax radiograph ( 7s, 0•035 mSv effective dose). Patients who had undergone a medically indicated chest CT were recruited from the department of Radiology and Pneumology of our site (Klinikum rechts der Isar, Technical University of Munich, Munich, Germany). Patients with pulmonary pathologies, or conditions other than COPD, that might influence lung parenchyma were excluded. For patients with different disease stages of pulmonary emphysema, x-ray dark-field images and CT images were acquired and visually assessed by five readers. Pulmonary function tests (spirometry and body plethysmography) were performed for every patient and for a subgroup of patients the measurement of diffusion capacity was performed. Individual patient datasets were statistically evaluated using correlation testing, rank-based analysis of variance, and pair-wise post-hoc comparison. Findings Between October, 2018 and December, 2019 we enrolled 77 patients. Compared with CT-based parameters (quantitative emphysema ρ=-0•27, p=0•089 and visual emphysema ρ=-0•45, p=0•0028), the dark-field signal (ρ=0•62, p<0•0001) yields a stronger correlation with lung diffusion capacity in the evaluated cohort. Emphysema assessment based on dark-field chest x-ray features yields consistent conclusions with findings from visual CT image interpretation and shows improved diagnostic performance than conventional clinical tests characterising emphysema. Pair-wise comparison of corresponding test parameters between adjacent visual emphysema severity groups (CT-based, reference standard) showed higher effect sizes. The mean effect size over the group comparisons (absent-trace, trace-mild, mild-moderate, and moderate-confluent or advanced destructive visual emphysema grades) for the COPD assessment test score is 0•21, for forced expiratory volume in 1 s (FEV 1 )/functional vital capacity is 0•25, for FEV 1 % of predicted is 0•23, for residual volume % of predicted is 0•24, for CT emphysema index is 0•35, for dark-field signal homogeneity within lungs is 0•38, for dark-field signal texture within lungs is 0•38, and for darkfield-based emphysema severity is 0•42. Interpretation X-r...
X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm2) of a living pig, acquired with clinically compatible parameters (40 s scan time, approx. 80 µSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking.
Disorders of the lungs such as chronic obstructive pulmonary disease (COPD) are a major cause of chronic morbidity and mortality and the third leading cause of death in the world. The absence of sensitive diagnostic tests for early disease stages of COPD results in under-diagnosis of this treatable disease in an estimated 60–85% of the patients. In recent years a grating-based approach to X-ray dark-field contrast imaging has shown to be very sensitive for the detection and quantification of pulmonary emphysema in small animal models. However, translation of this technique to imaging systems suitable for humans remains challenging and has not yet been reported. In this manuscript, we present the first X-ray dark-field images of in-situ human lungs in a deceased body, demonstrating the feasibility of X-ray dark-field chest radiography on a human scale. Results were correlated with findings of computed tomography imaging and autopsy. The performance of the experimental radiography setup allows acquisition of multi-contrast chest X-ray images within clinical boundary conditions, including radiation dose. Upcoming clinical studies will have to demonstrate that this technology has the potential to improve early diagnosis of COPD and pulmonary diseases in general.
The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student’s two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (−20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.