In this paper the problem of density in the space C(X ), for a compact set X ⊂ C, of polynomial modules of the type { p + z d q: p, q ∈ C[z]} for integer d > 1, as well as several related problems are studied. We obtain approximability criteria for Carathéodory compact sets using the concept of a d-Nevanlinna domain, which is a new special analytic characteristic of planar simply connected domains. In connection with this concept we study the problem of taking roots in the model spaces, that is, in the subspaces of the Hardy space H 2 which are invariant under the backward shift operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.