The functional decomposition of polynomials has been a topic of great interest and importance in pure and computer algebra and their applications. The structure of compositions of (suitably normalized)is well understood in many cases, but quite poorly when the degrees of both components are divisible by the characteristic p. This work investigates the decomposition of polynomials whose degree is a power of p. An (equal-degree) icollision is a set of i distinct pairs (g, h) of polynomials, all with the
We present counting methods for some special classes of multivariate polynomials over a finite field, namely, the reducible ones, the s-powerful ones (divisible by the sth power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). One approach employs generating functions, and another one uses a combinatorial method. They yield exact formulas and approximations with relative errors that essentially decrease exponentially in the input size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.