This integrated study (field observations, micropalaeontology, magnetostratigraphy, geochemistry, borehole data and seismic profiles) of the Messinian–Zanclean deposits on Zakynthos Island (Ionian Sea) focuses on the sedimentary succession recording the pre-evaporitic phase of the Messinian salinity crisis (MSC) through the re-establishment of the marine conditions in a transitional area between the eastern and the western Mediterranean. Two intervals are distinguished through the palaeoenvironmental reconstruction of the pre-evaporitic Messinian in Kalamaki: (a) 6.45–6.122 Ma and (b) 6.122–5.97 Ma. Both the planktonic foraminifer and the fish assemblages indicate a cooling phase punctuated by hypersalinity episodes at around 6.05 Ma. Two evaporite units are recognized and associated with the tectonic evolution of the Kalamaki–Argassi area. The Primary Lower Gypsum (PLG) unit was deposited during the first MSC stage (5.971–5.60 Ma) in late-Messinian marginal basins within the pre-Apulian foreland basin and in the wedge-top (<300 m) developed over the Ionian zone. During the second MSC stage (5.60–5.55 Ma), the PLG evaporites were deeply eroded in the forebulge–backbulge and the wedge-top areas, and supplied the foreland basin's depocentre with gypsum turbidites assigned to the Resedimented Lower Gypsum (RLG) unit. In this study, we propose a simple model for the Neogene–Pliocene continental foreland-directed migration of the Hellenide thrusting, which explains the palaeogeography of the Zakynthos basin. The diapiric movements of the Ionian Triassic evaporites regulated the configuration and the overall subsidence of the foreland basin and, therefore, the MSC expression in this area
The Messinian Salinity Crisis (MSC; 5.97–5.33 Ma) is an enigmatic episode of paleoceanographic change, when kilometer‐thick evaporite units were deposited in the Mediterranean basin. Here we use geochemical (biomarker and isotope) data to reconstruct sea surface temperature, salinity, and productivity‐preservation changes in the Mediterranean basin just before the MSC. The proxy data indicate that the Mediterranean Sea was significantly saltier and colder between 6.415 and 6.151 Ma, than between 6.151 and 5.971 Ma. Salinity decrease at 6.151 Ma seems to be a relatively fast event just preceding the inception of a warming phase that lasted almost uninterrupted until the MSC onset. The water exchange with the Paratethys could have caused, along with the African rivers, an increased freshwater supply, resulting in normal marine Mediterranean waters between 6.151 and 5.971 Ma, despite the severe restriction of marine connections with the Atlantic at that time. Sea surface temperature changes determined a sharp drop in productivity and/or preservation of organic matter, marked by deposition of calcareous marls. Productivity and preservation were relatively high and constant until 6.01 Ma. Afterward, increased influx of terrestrial organic matter and probably enhanced water column stratification prevailed. Around 5.971 Ma, modifications in aquatic versus terrestrially derived biomarkers indicate changes in organic matter influx at the MSC onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.