Miscarriage is a condition that affects 10%-15% of all clinically recognized pregnancies, most of which occur in the first trimester. Approximately 50% of first-trimester miscarriages result from fetal chromosome abnormalities. Currently, G-banded chromosome analysis is used to determine if large-scale genetic imbalances are the cause of these pregnancy losses. This technique relies on the culture of cells derived from the fetus, a technique that has many limitations, including a high rate of culture failure, maternal overgrowth of fetal cells, and poor chromosome morphology. Comparative genomic hybridization (CGH)-array analysis is a powerful new molecular cytogenetic technique that allows genomewide analysis of DNA copy number. By hybridizing patient DNA and normal reference DNA to arrays of genomic clones, unbalanced gains or losses of genetic material across the genome can be detected. In this study, 41 product-of-conception (POC) samples, which were previously analyzed by G-banding, were tested using CGH arrays to determine not only if the array could identify all reported abnormalities, but also whether any previously undetected genomic imbalances would be discovered. The array methodology detected all abnormalities as reported by G-banding analysis and revealed new abnormalities in 4/41 (9.8%) cases. Of those, one trisomy 21 POC was also mosaic for trisomy 20, one had a duplication of the 10q telomere region, one had an interstitial deletion of chromosome 9p, and the fourth had an interstitial duplication of the Prader-Willi/Angelman syndrome region on chromosome 15q, which, if maternally inherited, has been implicated in autism. This retrospective study demonstrates that the DNA-based CGH-array technology overcomes many of the limitations of routine cytogenetic analysis of POC samples while enhancing the detection of fetal chromosome aberrations.
Purpose: Genome-wide telomere screening by fluorescence in situ hybridization (FISH) has revealed that Ϸ 6% of unexplained mental retardation is due to submicroscopic telomere imbalances. However, the use of FISH for telomere screening is labor intensive and time consuming, given that 41 telomeres are interrogated. We have evaluated the use of array-based Comparative Genomic Hybridization (aCGH) as a more efficient tool for identifying telomere rearrangements. Methods: In this study, 102 individuals with unexplained mental retardation, with either normal or abnormal FISH results, were selected for a blinded retrospective study using aCGH. Results between the two methodologies were compared to ascertain the ability of aCGH to be used in a clinical diagnostics setting. Results:We detected 100% of all imbalances previously identified by FISH (n ϭ 17) and identified two additional abnormalities, a 10q telomere duplication and an interstitial duplication of 22q11. Interphase FISH analysis verified all abnormal array results. We also demonstrated that aCGH can accurately calibrate the size of telomere imbalances by using an array with "molecular rulers" for the telomeric regions of 1p, 16p, 17p, and 22q.Conclusion: This study demonstrates that aCGH is an equivalent methodology to telomere FISH for detecting submicroscopic deletions. In addition, small duplications that are not easily visible by FISH can be accurately detected using aCGH. Because aCGH allows simultaneous interrogation of hundreds to thousands of DNA probes and is more amenable to automation, it offers an efficient and high-throughput alternative for detecting and calibrating unbalanced rearrangements, both of the telomere region, as well as other genomic locations. Genet Med 2005:7(4):264 -271.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.