The very good consistency between PDU, CDU and ADF indicates a comparable applicability for assessing IBF in ATs. Intra-observer reliability was high for both investigators, independent of experience. The moderate inter-observer reliability reflects the challenge in sonographic detection of intratendinous blood flow (IBF) amount.
Sonographic examination of muscle architecture of the medial gastrocnemius has good to high reliability. In contrast to pennation angle measurements, length measurements can be improved by standardization of the probe position.
The study investigated the incidence of Achilles and patellar tendinopathy in adolescent elite athletes and non-athletic controls. Furthermore, predictive and associated factors for tendinopathy development were analyzed. The prospective study consisted of two measurement days (M1/M2) with an interval of 3.2±0.9 years. 157 athletes (12.1±0.7 years) and 25 controls (13.3±0.6 years) without Achilles/patellar tendinopathy were included at M1. Clinical and ultrasound examinations of both Achilles (AT) and patellar tendons (PT) were performed. Main outcome measures were incidence tendinopathy and structural intratendinous alterations (hypo-/hyperechogenicity, vascularization) at M2 [%]. Incidence of Achilles tendinopathy was 1% in athletes and 0% in controls. Patellar tendinopathy was more frequent in athletes (13%) than in controls (4%). Incidence of intratendinous alterations in ATs was 1-2% in athletes and 0% in controls, whereas in PTs it was 4-6% in both groups (p>0.05). Intratendinous alterations at M2 were associated with patellar tendinopathy in athletes (p≤0.01). Intratendinous alterations at M1, anthropometric data, training amount, sports or sex did not predict tendinopathy development (p>0.05). Incidence of tendinopathy and intratendinous alterations in adolescent athletes is low in ATs and more common in PTs. Development of intratendinous alterations in PT is associated with tendinopathy. However, predictive factors could not be identified.
Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.