Alzheimer’s disease (AD) is now classified as a silent pandemic due to concerning current statistics and future predictions. Despite this, no effective treatment or accurate diagnosis currently exists. The negative impacts of invasive techniques and the failure of clinical trials have prompted a shift in research towards non-invasive treatments. In light of this, there is a growing need for early detection of AD through non-invasive approaches. The abundance of data generated by non-invasive techniques such as blood component monitoring, imaging, wearable sensors, and bio-sensors not only offers a platform for more accurate and reliable bio-marker developments but also significantly reduces patient pain, psychological impact, risk of complications, and cost. Nevertheless, there are challenges concerning the computational analysis of the large quantities of data generated, which can provide crucial information for the early diagnosis of AD. Hence, the integration of artificial intelligence and deep learning is critical to addressing these challenges. This work attempts to examine some of the facts and the current situation of these approaches to AD diagnosis by leveraging the potential of these tools and utilizing the vast amount of non-invasive data in order to revolutionize the early detection of AD according to the principles of a new non-invasive medicine era.
The rise of precision medicine combined with the variety of biomedical data sources and their heterogeneous nature make the integration and exploration of information that they retain more complicated. In light of these issues, translational research platforms were developed as a promising solution. Research centers have used translational tools for the study of integrated data for hypothesis development and validation, cohort discovery and data-exploration. For this article, we reviewed the literature in order to determine the use of translational research platforms in precision medicine. These tools are used to support scientists in various domains regarding precision medicine research. We identified eight platforms: BRISK, iCOD, iDASH, tranSMART, the recently developed OncDRS, as well as caTRIP, cBio Cancer Portal and G-DOC. The last four platforms explore multidimensional data specifically for cancer research. We focused on tranSMART, for it is the most broadly used platform, since its development in 2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.