Autism is a neurodevelopmental disorder characterized by clinical, etiologic, and genetic heterogeneity. During the last decade, predisposing genes and genetic loci were under investigation. Recently, mutations in two X-linked neuroligin genes, neuroligin 3 (NLGN3) and neuroligin 4 (NLGN4), have been implicated in the pathogenesis of autism. In our ongoing survey, we screened 169 patients with autism for mutations linked with autism. In the preliminary study of specific exons of NLGN3 and NLGN4 genes, we identified the p.K378R substitution (c.1597 A > G) in exon 5 of the NLGN4 gene in a patient who was found to have mild autism and normal IQ at 3 years of age. The same mutation has previously been found in a patient with autism. It is important that, for the first time, a specific mutation in neuroligins is confirmed in a molecular screen in another homogeneous ethnic population. This finding further contributes to consideration of neuroligins as probable candidate genes for future molecular genetic studies, suggesting that a defect of synaptogenesis may predispose to autism.
Molecular and neurobiological evidence for the involvement of neuroligins (particularly NLGN3 and NLGN4X genes) in autistic disorder is accumulating. However, previous mutation screening studies on these two genes have yielded controversial results. The present study explores, for the first time, the contribution of NLGN3 and NLGN4X genetic variants in Greek patients with autistic disorder. We analyzed the full exonic sequence of NLGN3 and NLGN4X genes in 40 patients strictly fulfilling the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. criteria for autistic disorder. We identified nine nucleotide changes in NLGN4X--one probable causative mutation (p.K378R) previously reported by our research group, one novel variant (c.-206G>C), one nonvalidated single nucleotide polymorphism (SNP, rs111953947), and six known human SNPs reported in the SNP database--and one known human SNP in NLGN3 also reported in the SNP database. The variants identified are expected to be benign. However, they should be investigated in the context of variants in interacting cellular pathways to assess their contribution to the etiology of autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.