Photocatalytic hydrogen (H2) production is a process that converts solar energy into chemical energy by means of a suitable photocatalyst. After the huge amount of systems that have been tested in the last forty years, the advent of nanotechnology and a careful design at molecular level, allow to obtain attractive activity, even using pure visible light. At the same time we are approaching reasonable photocatalyst stability in laboratory test, and the attention is paid to identify cost-effective photocatalysts that might find real applications. This Review provides a broad overview of the elementary steps of the heterogeneous photocatalytic H2 production, including an outline of the physico-chemical reactions occurring on semiconductors and cocatalysts. The use of different renewable oxygenates as sustainable sacrificial agent for the H2 production is outlined, in view of a transition from fossil fuels to pure water splitting. Finally, the recent advances in the development of photocatalyst are discussed focusing on the current progress in organic and hybrid organic/inorganic photocatalysts
The influence of Pb(II) ions on the properties of the free radicals formed in humic acids and fulvic acids was investigated by electron paramagnetic resonance spectroscopy. It is shown that, in both humic acid and fulvic acid, Pb(II) ions shift the radical formation equilibrium by increasing the concentration of stable radicals. Moreover, in both humic acid and fulvic acid, Pb(II) ions cause a characteristic lowering of the stable radicals' g-values to g = 2.0010, which is below the free electron g-value. This effect is unique for Pb ions and is not observed with other dications. Gallic acid (3,4,5-trihydroxybenzoic acid) and tannic acid are shown to be appropriate models for the free radical properties, i.e., g-values, Pb effect, pH dependence, of humic and fulvic acid, respectively. On the basis of density functional theory calculations for the model system (gallic acid-Pb), the observed characteristic g-value reduction upon Pb binding is attributed to the delocalization of the unpaired spin density onto the Pb atom. The present data reveal a novel environmental role of Pb(II) ions on the formation and stabilization of free radicals in natural organic matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.