Ceramide is among a number of potential lipotoxic molecules that are thought to modulate cellular energy metabolism. The heart is one of the tissues thought to become dysfunctional due to excess lipid accumulation. Dilated lipotoxic cardiomyopathy, thought to be the result of diabetes and severe obesity, has been modeled in several genetically altered mice, including animals with cardiac-specific overexpression of glycosylphosphatidylinositol (GPI)-anchored human lipoprotein lipase (LpL GPI ). To test whether excess ceramide was implicated in cardiac lipotoxicity, de novo ceramide biosynthesis was inhibited pharmacologically by myriocin and genetically by heterozygous deletion of LCB1, a subunit of serine palmitoyltransferase (SPT). Inhibition of SPT, a rate-limiting enzyme in ceramide biosynthesis, reduced fatty acid and increased glucose oxidation in isolated perfused LpL GPI hearts, improved systolic function, and prolonged survival rates. Our results suggest a critical role for ceramide accumulation in the pathogenesis of lipotoxic cardiomyopathy.-Park, T
Rationale
Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. Following myocardial infarction (MI), phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes (CMs). The molecular mechanisms of efferocytosis of CMs and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function.
Objective
We set out to identify mechanisms of dying cardiomyocyte (CM) engulfment by phagocytes and to for the first time assess the causal significance of disrupting efferocytosis during MI.
Methods and Results
In contrast to other apoptotic cell receptors, macrophage MER tyrosine kinase (MER-TK) was necessary and sufficient for efferocytosis of CMs ex vivo. In mice, Mertk was specifically induced in Ly6cLO myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic CMs, independent of changes in non-CMs, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk+/+ marrow into Mertk-/- mice corrected systolic dysfunction. Interestingly, an inactivated form of MERTK, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of MERTK inactivation post MI.
Conclusions
These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.