Reproductive timing can be defined as the temporal pattern of reproduction over a lifetime. Although reproductive timing is highly variable in marine fishes, certain traits are universal, including sexual maturity, undergoing one or more reproductive cycles, participating in one or more spawning events within a reproductive cycle, release of eggs or offspring, aging, and death. These traits commonly occur at four temporal scales: lifetime, annual, intraseasonal, and diel. It has long been known that reproductive timing affects reproductive success, especially in terms of the onset of sexual maturity and the match or mismatch between seasonal spawning and offspring survival. However, a comprehensive understanding of variability in reproductive timing over species, populations, and temporal scales is lacking. In addition, there is a need to assess how variability in reproductive timing affects a population's resilience. Because natural selection occurs at the individual level, this necessitates an understanding of within-population (i.e., individual) variability in reproductive timing and how fishing may impact it through age truncation and size-specific selectivity or fisheries-induced evolution. In this paper, we review the temporal aspects of reproductive strategies and the four most-studied reproductive timing characteristics in fishes: sexual maturity, spawning seasonality, spawning frequency, and diel periodicity. For each characteristic, we synthesize how it has traditionally been measured, advances in understanding the underlying physiology, its role in equilibriumbased fish population dynamics, and its importance to reproductive success. We then provide a review of emerging methodology-with an emphasis on ovarian histology-to improve our ability to assess variability in reproductive timing both among populations and within populations.
More than 120 surveys over 25 years suggest that appropriate use of the daily egg production method (DEPM) provides unbiased but rather imprecise estimates of spawning biomass (coefficient of variation generally above 30%). Knowledge of species reproductive biology and early life history and a survey design adapted to local population dynamics are required to optimize DEPM performance in terms of bias, precision and cost. Clupeoid applications dominate worldwide (mainly for anchovies and sardines) and estimates are often used to tune indirect assessment models or to calibrate other fisheries-independent methods. The method seems better adapted to the life history of anchovies than of sardines, leading to more precise estimates of anchovy spawning biomass and facilitating extensions of the method to estimate total biomass and numbers at age. The continuous underway fish egg sampler is often used as a secondary sampler in the ichthyoplankton survey of the DEPM to reduce the cost and improve the precision of egg production. Multinomial models were recently developed to analyse egg incubation data and used in a Bayesian procedure for egg ageing and delimitation of daily cohorts. These were incorporated in model-based estimators to get spatially explicit estimates of egg production, daily fecundity parameters and spawning biomass that can improve the precision of DEPM. Uncertainty in daily fecundity estimation of clupeoids is mainly because of spawning fraction estimation by the post-ovulatory follicle (POF) method. Exploration of recent histological and molecular techniques for POF characterization and laboratory experiments to test the effect of temperature on POF degradation can help to improve spawning fraction estimation. Available estimates of egg production and mortality, daily fecundity, spawning area and biomass from different populations, species and ecosystems are being used to improve the understanding of clupeoid spawning dynamics, their relation with ecosystem productivity and to build comprehensive population models. Finally, a counter-intuitive finding of this review is that, although the DEPM is almost exclusively applied to clupeoids, recent evidence indicates that it may be easier and cheaper to use in other teleost families, including demersal species.
Samples of Atlantic sardineSardina pilchardus (also known as European pilchard) were collected bimonthly from 2004 to 2008 off the central west coast of Portugal to describe the reproductive activity of this indeterminate batchspawning species; compare the seasonality of somatic growth, condition, and feeding; and evaluate differences between sexes. Monthly assessments of individual biological information for both males and females were complemented by histological analysis of ovaries during 1 year and liver tissues (both sexes) at different times of the reproductive cycle. The temporal patterns of the gonadosomatic index and various histological indices (most advanced oocyte stage, atresia incidence and prevalence, and spawning activity) indicated that Atlantic sardine were reproductively active mainly from October to March and that residual activity occurred in the remaining months. For both sexes, condition indices (hepatosomatic index, relative weight, and amount of fat stored) increased mainly during spring, reached a maximum at the end of summer just before the subsequent spawning season began, and then decreased during autumn and winter, declining to minimum levels at the beginning of spring coincident with a significant reduction in reproductive activity. Somatic growth took place mainly during spring and early summer for both sexes. The observed seasonal patterns in these biological properties suggest a seasonal transition from a period in which energy resources are allocated to reproduction (autumn and winter) to a period in which resources are allocated to growth and fat deposition (spring and summer). The only exception was the distinct hepatosomatic index pattern and the histological differences in hepatocytes between males and females during the spawning season, which may be related to the dual function of the liver in females (lipid metabolism and yolk precursor synthesis).Fish reproductive investment is the result of essential life history trade-offs in resource allocation (Stearns 1992). Energy that is surplus to the essential standard metabolic requirements (i.e., maintenance, locomotion, predation avoidance, and feeding activity) is allocated to somatic growth, energy storage, or reproduction after the fish reaches sexual maturation. The priority with which this surplus energy is allocated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.