The available experimental data for the density and viscosity of liquid aluminum and iron have been critically examined with the intention of establishing a density and a viscosity standard. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the density of the aluminum and iron are characterized by standard deviations of 0.65% and 0.77% at the 95% confidence level, respectively. The overall uncertainty in the absolute values of the density is estimated to be one of Ϯ0.7% for aluminum and 0.8% for iron, which is worse than that of the most optimistic claims but recognizes the unexplained discrepancies between different methods. The standard reference correlations for the viscosity of aluminum and iron are characterized by standard deviations of 13.7% and 5.7% at the 95% confidence level, respectively. The uncertainty in the absolute values of the viscosity of the two metals is thought to be no larger than the scatter between measurements made with different techniques and so can be said to be Ϯ14% in the case of aluminum and Ϯ6% in the case of iron.
Rapid economic expansion, industrialization, urbanisation and construction in the Middle East Area (MEA) have led to an increase in the levels of air pollution, resulting in serious effects on human health. For the first time, this article provides a comprehensive synthesis of the currently available published information which deals with atmospheric particulate matter (PM) in MEA. The focus of the article remains on the PM sources, monitoring, health impacts and source apportionment.The key objectives are to identify the levels of PM pollution and the associated exposure risks, to highlight research gaps and to discuss future research directions. The limited number of monitoring studies available for MEA indicates that dust storms augmented by the rapid increase in urban population are the key reasons for the high PM concentration levels. The findings of reviewed monitoring studies suggest that the levels of both annual mean PM 10 (20 μg/m 3 ) and PM 2.5 (10 μg/m 3 ) concentrations exceed the World Health Organization (WHO) guidelines during most of the non-dust storm episodes, and as expected, the PM pollution levels become even higher during dust storm episodes. For example, 24-h mean PM 10 concentrations of over 1,000 μg/m 3 were noted during a severe dust storm episode in Kuwait. The findings of the epidemiological and toxicological studies in MEA have shown that dust storm events have a significant impact on respiratory admissions and the adverse health effects of PM are particularly in the form of asthma and respiratory and cardiovascular diseases. It is concluded that PM pollution in MEA is a significant problem and quantification of PM emissions and the design of control measures to abate their impacts on public health are of primary importance. Besides, there is a need for more systematic PM data collection for source apportionment and assessment of PM levels that would enable air pollution-related health impact assessments of MEA. Furthermore, this review highlights that the release of airborne PM from major building activities such as building construction is largely unknown and emission inventories for different situations are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.