The study of flow and particle dynamics in microfluidic cross-slot channels is of high relevance for lab-on-a-chip applications. In this work, we investigate the dynamics of a rigid spherical particle in a cross-slot junction for a channel height-to-width ratio of 0.6 and at a Reynolds number of 120 for which a steady vortex exists in the junction area. Using an in-house immersed-boundary-lattice-Boltzmann code, we analyse the effect of the entry position of the particle in the junction and the particle size on the dynamics and trajectory shape of the particle. We find that the dynamics of the particle depend strongly on its lateral entry position in the junction and weakly on its vertical entry position; particles that enter close to the centre show trajectory oscillations. Larger particles have longer residence times in the junction and tend to oscillate less due to their confinement. Our work contributes to the understanding of particle dynamics in intersecting flows and enables the design of optimised geometries for cytometry and particle manipulation.
Inertial particle microfluidics (IPMF) is an emerging technology for the manipulation and separation of microparticles and biological cells. Since the flow physics of IPMF is complex and experimental studies are often time-consuming or costly, computer simulations can offer complementary insights. In this tutorial review, we provide a guide for researchers who are exploring the potential of the lattice-Boltzmann (LB) method for simulating IPMF applications. We first review the existing literature to establish the state of the art of LB-based IPMF modelling. After summarising the physics of IPMF, we then present related methods used in LB models for IPMF and show several case studies of LB simulations for a range of IPMF scenarios. Finally, we conclude with an outlook and several proposed research directions.
The study of flow and particle dynamics in microfluidic cross-slot channels is of high relevance for lab-on-a-chip applications. In this work we investigate the dynamics of a rigid spherical particle in a cross-slot junction for a channel height-to-width ratio of 0.6 and at a Reynolds number of 120 for which a steady vortex exists in the junction area. Using an in-house immersed-boundary-lattice-Boltzmann code, we analyse the effect of the entry position of the particle in the junction and the particle size on the dynamics and trajectory shape of the particle. We find that the dynamics of the particle depends strongly on its lateral entry position in the junction and weakly on its vertical entry position; particles that enter close to the centre show trajectory oscillations. Larger particles have longer residence times in the junction and tend to oscillate less due to their confinement. Our work contributes to the understanding of the particle dynamics in intersecting flows and enables the design of optimised geometries for cytometry and particle manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.