Cardiovascular diseases (CVDs) are the leading cause of death globally. Detecting this kind of disease represents the principal concern of many scientists, and techniques belonging to various fields have been developed to attain accurate predictions. The aim of the paper is to investigate the potential of the classical, evolutionary, and deep learning-based methods to diagnose CVDs and to introduce a couple of complex hybrid techniques that combine hyper-parameter optimization algorithms with two of the most successful classification procedures: support vector machines (SVMs) and Long Short-Term Memory (LSTM) neural networks. The resulting algorithms were tested on two public datasets: the data recorded by the Cleveland Clinic Foundation for Heart Disease together with its extension Statlog, two of the most significant medical databases used in automated prediction. A long series of simulations were performed to assess the accuracy of the analyzed methods. In our experiments, we used F1 score and MSE (mean squared error) to compare the performance of the algorithms. The experimentally established results together with theoretical consideration prove that the proposed methods outperform both the standard ones and the considered statistical methods. We have developed improvements to the best-performing algorithms that further increase the quality of their results, being a useful tool for assisting the professionals in diagnosing CVDs in early stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.