For aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions, a structural instability leads to the collapse and aggregation of the macromolecules at the temperature-induced demixing transition. The accompanying cooperative dehydration of the PNIPAM chains is known to play a crucial role in this phase separation. We elucidate the impact of partial dehydration of PNIPAM on the volume changes related to the phase separation of dilute to concentrated PNIPAM solutions. Quasi-elastic neutron scattering enables us to directly follow the isotropic jump diffusion behavior of the hydration water and the almost freely diffusing water. As the hydration number decreases from 8 to 2 for the demixing 25 mass % PNIPAM solution, only a partial dehydration of the PNIPAM chains occurs. Dilatation studies reveal that the transition-induced volume changes depend in a remarkable manner on the PNIPAM concentration of the solutions. The excess volume per mole of H2O molecules expelled from the solvation layers of PNIPAM during phase separation probably strongly increases from dilute to concentrated PNIPAM solutions. This finding is qualitatively related to the immense strain-softening previously observed for demixing PNIPAM solutions.
The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently from parallel ones, which is due to the fact that their initial lamellar thicknesses differ strongly. Quantitatively, the swelling process is composed of three regimes and the drying process of two regimes. The first two regimes of swelling are associated with a significant structural rearrangement of the lamellae; i.e., the lamellae first become thicker, and then perpendicular and randomly oriented lamellae vanish, which results in a purely parallel orientation at the end of the swelling process. The rearrangement is attributed to the increase of mobility of the polymer chains imparted by the solvent and to a decrease of total free energy of the thin film. In the third regime of swelling, the scaling exponent is found to be β = −0.32. During drying, the deswelling is nonaffine which may be a consequence of the increase of nonfavorable segmental interactions as the solvent is removed.
Octa-OH-functional POSS has been incorporated into a model polyurethane elastomer as a comparatively massive and notionally "robust" 3-dimensional cross-linking core. The effects of this cross-linking moiety on the morphology and molecular dynamics of the system are studied over a range of size and time scales. Microscopy, scattering, spectroscopic, thermal, and dielectric techniques, in agreement with each other, show that the covalent inclusion of the crosslinking particles restricts microphase separation, inhibits the formation of hard-block domains, and decelerates the motional dynamics of the polyurethane backbone. The effects on both the morphology and the dynamics of the polyurethane system are not continuous but occur in a steplike manner in the loading region of 4−6 wt % POSS. This critical region is thought to correspond to a sterically induced transition from one dominant morphology (microphase segregated) to an increasingly homogeneous nanophase segregated domain morphology. Contrary to expectations, cross-linking, even by the presumably rigid siliceous nanoparticles, reduces the mechanical modulus. In conjunction with the reduction of microphase separation, this observation indicates that the hard microdomains reinforce the polymer more effectively than the chemical cross-links.
Based on diblock copolymers, a pair of "schizophrenic" micellar systems is designed by combining a nonionic and thermoresponsive block with a zwitterionic block, which is thermoresponsive and salt-sensitive. The nonionic block is poly(N-isopropylacrylamide) (PNIPAM) or poly(N-isopropylmethacrylamide) (PNIPMAM) and exhibits a lower critical solution temperature (LCST) behavior in aqueous solution. The zwitterionic block is a polysulfobetaine, i.e., poly(4-((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate) (PSBP), and has an upper critical solution temperature (UCST) behavior with the clearing point decreasing with increasing salt concentration. The PSBP-b-PNIPAM and PSBP-b-PNIPMAM diblock copolymers are prepared by successive reversible addition−fragmentation chain transfer (RAFT) polymerizations. The PSBP block is chosen such that the clearing point of the homopolymer is significantly higher in pure water than the cloud point of PNIPAM or PNIPMAM. Using turbidimetry, 1 H NMR, and small-angle neutron scattering, we investigate the overall phase behavior as well as the structure and interaction between the micelles and the intermediate phase, both in salt-free D 2 O and in 0.004 M NaBr in D 2 O in a wide temperature range. We find that PSBP-b-PNIPAM at 50 g L −1 in salt-free D 2 O is turbid in the entire temperature range. It forms spherical micelles below the cloud point of PNIPAM and cylindrical micelles above. Similar behavior is observed for PSBP-b-PNIPMAM at 50 g L −1 in salt-free D 2 O with a slight and smooth increase of the light transmission below the cloud point of PNIPMAM and an abrupt decrease above. Upon addition of 0.004 M NaBr, the UCSTtype cloud point of the PSBP-block is notably decreased, and an intermediate regime is encountered below the cloud point of PNIPMAM, where the light transmission is slightly enhanced. In this regime, the polymer solution exhibits behavior typical for polyelectrolyte solutions. Thus, double thermosensitive and salt-sensitive behavior with "schizophrenic" micelle formation is found, and the width of the intermediate regime, where both blocks are hydrophilic, can be tuned by the addition of electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.